Supernova Progenitors Observed with HST

  • Schuyler D. Van DykEmail author
Living reference work entry


To understand the relevance of supernovae and to enable their use as probes of stellar evolution throughout time, it is necessary to determine their stellar origins. I describe the direct identification of supernova progenitors in existing pre-explosion images, particularly those obtained through serendipitous imaging of nearby galaxies by the Hubble Space Telescope. Establishing the astrometric coincidence of a supernova with its putative progenitor is straightforward. The interpretation of these results is more complicated and fraught with larger uncertainties. I describe the necessary ingredients for this interpretation. I comment on specific cases, particularly for core-collapse supernova progenitors, which are the only ones that have been detected to date. I also describe the need to revisit the supernova site, long after the supernova has faded, to confirm the progenitor identification through the star’s disappearance and potentially to detect a putative binary companion that may have survived the explosion.


Host Galaxy Bolometric Luminosity James Webb Space Telescope Surface Brightness Fluctuation Progenitor System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams SM, Kochanek CS (2015) LOSS’s first supernova? New limits on the ‘impostor’ SN 1997bs. Mon Not R Astron Soc 452:2195–2207ADSCrossRefGoogle Scholar
  2. Aldering G, Humphreys RM, Richmond M (1994) SN 1993J: the optical properties of its progenitor. Astron J 107:662–672ADSCrossRefGoogle Scholar
  3. Anderson J, King IR (2006) PSFs, photometry, and astronomy for the ACS/WFC. Instrument Science report ACS 2006-01, 34ppGoogle Scholar
  4. Anderson JP, Habergham SM, James PA, Hamuy M (2012) Progenitor mass constraints for core-collapse supernovae from correlations with host galaxy star formation. Mon Not R Astron Soc 424:1372–1391ADSCrossRefGoogle Scholar
  5. Anderson JP, González-Gaitán S, Hamuy M et al (2014) Characterizing the V-band light-curves of hydrogen-rich Type II supernovae. Astrophys J 786(id.67):35Google Scholar
  6. Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the sun. Annu Rev Astron Astrophys 47:481–522ADSCrossRefGoogle Scholar
  7. Barbon R, Ciatti F, Rosino L (1979) Photometric properties of Type II supernovae. Astron Astrophys 72:287–292ADSGoogle Scholar
  8. Barth AJ, Van Dyk SD, Filippenko AV et al (1996) The environments of supernovae in archival hubble space telescope images. Astron J 111:2047–2058ADSCrossRefGoogle Scholar
  9. Bersten MC, Benvenuto O, Hamuy M (2011) Hydrodynamical models of Type II plateau supernovae. Astrophys J 729(id.61):19Google Scholar
  10. Bersten MC, Benvenuto O, Folatelli G et al (2014) iPTF13bvn: the first evidence of a binary progenitor for a Type Ib supernova. Astron J 148(id.68):6Google Scholar
  11. Bose S, Sutaria F, Kumar B et al (2015) SN 2013ej: a Type IIL supernova with weak signs of interaction. Astrophys J 806(id.160):18Google Scholar
  12. Cao Y, Kasliwal MM, Arcavi I et al (2013) Discovery, progenitor and early evolution of a stripped envelope supernova iPTF13bvn. Astrophys J 775(id.L7):7Google Scholar
  13. Cardelli JA, Clayton GC, Mathis JS (1989) The relationship between infrared, optical, and ultraviolet extinction. Astrophys J 345:245–256ADSCrossRefGoogle Scholar
  14. Castelli F, Kurucz RL (2003) New grids of ATLAS9 model atmospheres. In: Piskunov N, Weiss WW, Gray DF (eds) Modelling of stellar atmospheres. ASP, San Francisco, p A20Google Scholar
  15. Chen Y, Bressan A, Girardi L et al (2015) PARSEC evolutionary tracks of massive stars up to 350 M at metallicities 0. 0001 ≤ Z ≤ 0. 04. Mon Not R Astron Soc 452:1068–1080ADSCrossRefGoogle Scholar
  16. Chevalier RA (1992) Supernova 1987A at five years of age. Nature 355:691–696ADSCrossRefGoogle Scholar
  17. Chevalier RA, Soderberg AM (2010) Type IIb supernovae with compact and extended progenitors. Astrophys J 711:L40–L43ADSCrossRefGoogle Scholar
  18. Cohen JG, Darling J, Porter A (1995) The nonvariability of the progenitor of supernova 1993J in M81. Astron J 110:308–311ADSCrossRefGoogle Scholar
  19. Crockett RM, Smartt SJ, Eldridge JJ et al (2007) A deeper search for the progenitor of the Type Ic supernova 2002ap. Mon Not R Astron Soc 381:835–850ADSCrossRefGoogle Scholar
  20. Crockett RM, Maund JM, Smartt SJ et al (2008a) The birth place of the Type Ic supernova 2007gr. Astrophys J 672:L99–L102ADSCrossRefGoogle Scholar
  21. Crockett RM, Eldridge JJ, Smartt SJ et al (2008b) The Type IIb SN 2008ax: the nature of the progenitor. Mon Not R Astron Soc 391:L5–L9ADSGoogle Scholar
  22. Crockett RM, Smartt SJ, Pastorello A et al (2011) On the nature of the progenitors of three Type II-P supernovae: 2004et, 2006my and 2006ov. Mon Not R Astron Soc 410:2767–2786ADSCrossRefGoogle Scholar
  23. Dalcanton JJ, Williams BF, Seth AC et al (2009) The ACS nearby galaxy survey treasury. Astrophys J Supp 183:67–108ADSCrossRefGoogle Scholar
  24. Dall’Ora M, Botticella MT, Pumo ML et al (2014) The Type IIP supernova 2012aw in M95: hydrodynamical modeling of the photospheric phase from accurate spectrophotometric monitoring. Astrophys J 787(id.139):18Google Scholar
  25. de Jaeger T, González-Gaitán S, Anderson JP et al (2015) A hubble diagram from Type II supernovae based solely on photometry: the photometric color method. Astrophys J 815(id.121):13Google Scholar
  26. Dolphin AE (2000a) WFPC2 stellar photometry with HSTPHOT. Publ Astron Soc Pac 112:1383–1396ADSCrossRefGoogle Scholar
  27. Dolphin AE (2000b) The charge-transfer efficiency and calibration of WFPC2. Publ Astron Soc Pac 112:1397–1410ADSCrossRefGoogle Scholar
  28. Drout MR, Soderberg AM, Gal-Yam A et al (2011) The first systematic study of Type Ibc supernova multi-band light curves. Astrophys J 741(id.97):20Google Scholar
  29. Eggleton PP (1971) The evolution of low mass stars. Mon Not R Astron Soc 151:351–364ADSCrossRefGoogle Scholar
  30. Ekstöm S, Georgy C, Eggenberger P et al (2012) Grids of stellar models with rotation. I. models from 0.8 to 120 M at solar metallicity (Z = 0.014). Astron Astrophys 537(id.A146):18Google Scholar
  31. Eldridge JJ, Fraser M, Smartt SJ et al (2013) The death of massive stars – II. observational constraints on the progenitors of Type Ibc supernovae. Mon Not R Astron Soc 436:774–795ADSCrossRefGoogle Scholar
  32. Eldridge JJ, Fraser M, Maund JR, Smartt SJ (2015) Possible binary progenitors for the Type Ib supernova iPTF13bvn. Mon Not R Astron Soc 446:2689–2695ADSCrossRefGoogle Scholar
  33. Elias-Rosa N, Van Dyk SD, Li W et al (2009) On the progenitor of the Type II-Plateau SN 2008cn in NGC 4603. Astrophys J 706:1174–1183 [Erratum: Astrophys. J. 711, 1343 (2010)]Google Scholar
  34. Elias-Rosa N, Van Dyk SD, Li W et al (2010) The massive progenitor of the Type II-linear supernova 2009kr. Astrophys J 714:L254–L259ADSCrossRefGoogle Scholar
  35. Elias-Rosa N, Van Dyk SD, Li W et al (2011) The massive progenitor of the possible Type II-linear supernova 2009hd in Messier 66. Astrophys J 742(id.6):11Google Scholar
  36. Elias-Rosa N (2013) The progenitors of stripped-envelope supernovae. In: Guirado JC, Lara LM, Quilis V, Gorgas J (eds) Highlights of Spanish astrophysics VII. Spanish Astronomical Society, Valencia, pp 649–649Google Scholar
  37. Elias-Rosa N, Pastorello A, Maund JR et al (2013) On the progenitor of the Type Ic SN 2013dk in the Antennae galaxies. Mon Not R Astron Soc 436:L109–L113ADSCrossRefGoogle Scholar
  38. Elias-Rosa N, Benetti S, Tomasella L et al (2015) Asiago spectroscopic classification of the SN impostor SNhunt275. Astron Telegram No. 7042Google Scholar
  39. Faran T, Poznanski D, Filippenko AV et al (2014) A sample of Type II-L supernovae. Mon Not R Astron Soc 445:554–569ADSCrossRefGoogle Scholar
  40. Filippenko AV (1997) Optical spectra of supernovae. Annu Rev Astron Astrophys 35:309–355ADSCrossRefGoogle Scholar
  41. Filippenko AV, Barth AJ, Bower GC et al (1995) Was Fritz Zwicky’s “Type V” SN 1961V a Genuine Supernova? Astron J 110:2261–2273ADSCrossRefGoogle Scholar
  42. Flower PJ (1996) Transformations from theoretical Hertzsprung-Russell diagrams to color-magnitude diagrams: effective temperatures, B-V colors, and bolometric corrections. Astrophys J 469:355–365ADSCrossRefGoogle Scholar
  43. Folatelli G, Bersten MC, Benvenuto OG et al (2014) A blue point source at the location of supernova 2011dh. Astrophys J 793(id.L22):5Google Scholar
  44. Folatelli G, Bersten MC, Kuncarayakti H et al (2015) The progenitor of the Type IIb SN 2008ax revisited. Astrophys J 811(id.147):13Google Scholar
  45. Foley RJ, Berger E, Fox O et al (2011) The diversity of massive star outbursts. I. observations of SN2009ip, UGC 2773 OT2009-1, and their progenitors. Astrophys J 732(id.32):13Google Scholar
  46. Foley RJ, Van Dyk SD, Jha SW et al (2015) On the progenitor system of the Type Iax supernova 2014dt in M61. Astrophys J 798(id.L37):4Google Scholar
  47. Fox OD, Bostroem KA, Van Dyk SD et al (2014) Uncovering the putative B-star binary companion of the SN 1993J progenitor. Astrophys J 790(id.17):13Google Scholar
  48. Fraser M (2016) The disappearance of the progenitor of SN 2012aw in late-time imaging. Mon Not R Astron Soc 456:L16–L19ADSCrossRefGoogle Scholar
  49. Fraser M, Takáts K, Pastorello A et al (2010) On the progenitor and early evolution of the Type II supernova 2009kr. Astrophys J 714:L280–L284ADSCrossRefGoogle Scholar
  50. Fraser M, Ergon M, Eldridge JJ et al (2011) SN 2009md: another faint supernova from a low-mass progenitor. Mon Not R Astron Soc 417:1417–1433ADSCrossRefGoogle Scholar
  51. Fraser M, Maund JR, Smartt SJ et al (2012) Red and dead: the progenitor of SN 2012aw in M95. Astrophys J 759(id.L13):5Google Scholar
  52. Fraser M, Inserra C, Jerkstrand A et al (2013a) SN 2009ip à la PESSTO: no evidence for core collapse yet. Mon Not R Astron Soc 433:1312–1337ADSCrossRefGoogle Scholar
  53. Fraser M, Magee M, Kotak R et al (2013b) Detection of an outburst one year prior to the explosion of SN 2011ht. Astrophys J 779(id.L8):6Google Scholar
  54. Fraser M, Maund JR, Smartt SJ et al (2014) On the progenitor of the Type IIP SN 2013ej in M74. Mon Not R Astron Soc 439:L56–L60ADSCrossRefGoogle Scholar
  55. Fraser M, Kotak R, Pastorello A et al (2015) SN 2009ip at late times – an interacting transient at +2 years. Mon Not R Astron Soc 453:3886–3905ADSCrossRefGoogle Scholar
  56. Freedman WL, Madore BF, Mould JR et al (1994) Distance to the Virgo cluster galaxy M100 from Hubble Space Telescope observations of Cepheids. Nature 371:757–762ADSCrossRefGoogle Scholar
  57. Fruchter AS, Hack W, Dencheva N et al (2010) BetaDrizzle: a redesign of the multiDrizzle package. In: Deustua S, Oliveira C (eds) Space telescope science institute calibration workshop proceedings, STScI, Baltimore, pp 376–381Google Scholar
  58. Gall EEE, Polshaw J, Kotak R et al (2015) A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw. Astron Astrophys 582(id.A3):19Google Scholar
  59. Gal-Yam A, Leonard DC (2009) A massive hypergiant star as the progenitor of the supernova SN 2005gl. Nature 458:865–867ADSCrossRefGoogle Scholar
  60. Gal-Yam A, Fox DB, Kulkarni SR et al (2005) A high angular resolution search for the progenitor of the Type Ic Supernova 2004gt. Astrophys J 630:L29–L32ADSCrossRefGoogle Scholar
  61. Gal-Yam A, Leonard DC, Fox DB et al (2007) On the progenitor of SN 2005gl and the nature of Type IIn Supernovae. Astrophys J 656:372–381ADSCrossRefGoogle Scholar
  62. Georgy C (2012) Yellow supergiants as supernova progenitors: an indication of strong mass loss for red supergiants? Astron Astrophys 538(id.L8):5Google Scholar
  63. Gilmozzi R, Cassatella A, Clavel J et al (1987) The progenitor of SN1987A. Nature 328:318–320ADSCrossRefGoogle Scholar
  64. Gonzaga S, Hack W, Fruchter A, Mack J (eds) (2012) The DrizzlePac handbook. STScI, BaltimoreGoogle Scholar
  65. Graham ML, Sand DJ, Valenti S et al (2014) Clues to the nature of SN 2009ip from photometric and spectroscopic evolution to late times. Astroph J 787(id.163):16Google Scholar
  66. Graur O, Maoz D, Shara MM (2014) Progenitor constraints on the Type-Ia supernova SN2011fe from pre-explosion Hubble Space Telescope He II narrow-band observations. Mon Not R Astron Soc 442:L28–L32ADSCrossRefGoogle Scholar
  67. Groh JH, Georgy C, Ekström S (2013) Progenitors of supernova Ibc: a single Wolf-Rayet star as the possible progenitor of the SN Ib iPTF13bvn. Astron Astrophys 558(id.L1):4Google Scholar
  68. Gustafsson B, Edvardsson B, Eriksson K et al (2008) A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron Astrophys 486:951–970ADSCrossRefGoogle Scholar
  69. Hendry MA, Smartt SJ, Maund JR et al (2005) A study of the Type II-P supernova 2003gd in M74. Mon Not R Astron Soc 359:906–926ADSCrossRefGoogle Scholar
  70. Hendry MA, Smartt SJ, Crockett RM et al (2006) SN 2004A: another Type II-P supernova with a red supergiant progenitor. Mon Not R Astron Soc 369:1303–1320ADSCrossRefGoogle Scholar
  71. Holtzman JA, Hester JJ, Casertano S et al (1995) The performance and calibration of WFPC2 on the Hubble Space Telescope. Publ Astron Soc Pac 107:156–178ADSCrossRefGoogle Scholar
  72. Huang F, Wang X, Zhang J et al (2015) SN 2013ej in M74: a luminous and fast-declining Type II-P Supernova. Astroph J 807(id.59):12Google Scholar
  73. Humphreys EML, Reid MJ, Moran JM et al (2013) Toward a new geometric distance to the active galaxy NGC 4258. III. Final results and the Hubble constant. Astroph J 775(id.13):10Google Scholar
  74. Isserstedt J (1975) Photoelectric photometry of supergiants in the Large Magellanic Cloud. Astron Astrophys Suppl 19:259–269ADSGoogle Scholar
  75. Jerkstrand A, Fransson C, Maguire K et al (2012) The progenitor mass of the Type IIP supernova SN 2004et from late-time spectral modeling. Astron Astrophys 546(id.A28):21Google Scholar
  76. Kankare E, Mattila S, Ryder S et al (2014) The nature of supernovae 2010O and 2010P in Arp 299 – I. Near-infrared and optical evolution. Mon Not R Astron Soc 440:1052–1066ADSCrossRefGoogle Scholar
  77. Kelly PL, Kirshner RP, Pahre M (2008) Long γ-ray bursts and Type Ic core-collapse supernovae have similar locations in hosts. Astroph J 687:1201–1207ADSCrossRefGoogle Scholar
  78. Kelly PL, Fox OD, Filippenko AV et al (2014) Constraints on the progenitor system of the Type Ia Supernova 2014J from pre-explosion Hubble Space Telescope Imaging. Astroph J 790(id.3):9Google Scholar
  79. Kewley LJ, Ellison SL (2008) Metallicity calibrations and the mass-metallicity relation for star-forming galaxies. Astroph J 681:1183–1204ADSCrossRefGoogle Scholar
  80. Kochanek CS, Szczygiel DM, Stanek KZ (2011) The Supernova Impostor Impostor SN 1961V: spitzer shows that Zwicky was right (again). Astroph J 737(id.76):11Google Scholar
  81. Kochanek CS, Khan R, Dai X (2012) On absorption by circumstellar dust, with the progenitor of SN 2012aw as a case study. Astroph J 759(id.20):10Google Scholar
  82. Kuncarayakti H, Maeda K, Bersten MC et al (2015) Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor. Astron Astrophys 579(id.A95):9Google Scholar
  83. Kurucz R (1993) ATLAS9 stellar atmosphere programs and 2 km/s grid. Kurucz CD-ROM, No. 13. Smithsonian Astrophysical Observatory, CambridgeGoogle Scholar
  84. Lee MG, Freedman WL, Madore BF (1993) The tip of the red giant branch as a distance indicator for resolved galaxies. Astrophys J 417:553–559ADSCrossRefGoogle Scholar
  85. Leonard DC, Gal-Yam A, Fox DB et al (2008) An upper mass limit on a red supergiant progenitor for the Type II-Plateau Supernova SN 2006my. Publ Astron Soc Pac 120:1259–1266ADSCrossRefGoogle Scholar
  86. Levesque EM, Massey P, Olsen KAG et al (2005) The effective temperature scale of galactic red supergiants: cool, but not as cool as we thought. Astrophys J 628:973–985ADSCrossRefGoogle Scholar
  87. Li W, Van Dyk SD, Filippenko AV, Cuillandre J-C (2005) On the progenitor of the Type II Supernova 2004et in NGC 6946. Publ Astron Soc Pac 117:121–131ADSCrossRefGoogle Scholar
  88. Li W, Van Dyk SD, Filippenko AV et al (2006) Identification of the red supergiant progenitor of Supernova 2005cs: do the progenitors of Type II-P supernovae have low mass? Astrophys J 641:1060–1070ADSCrossRefGoogle Scholar
  89. Li W, Wang X, Van Dyk SD et al (2007) On the progenitors of two Type II-P Supernovae in the Virgo cluster. Astrophys J 661:1013–1024ADSCrossRefGoogle Scholar
  90. Li W, Bloom JS, Podsiadlowski P et al (2011) Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480:348–350ADSCrossRefGoogle Scholar
  91. Maíz-Apellániz J, Bond HE, Siegel MH et al (2004) The progenitor of the Type II-P SN 2004dj in NGC 2403. Astrophys J 615:L113–L116ADSCrossRefGoogle Scholar
  92. Mamajek EE, Torres G, Prsa A et al (2015) IAU 2015 resolution B2 on recommended zero points for the absolute and apparent bolometric magnitude scales. eprint arXiv:1510.06262Google Scholar
  93. Maoz D, Mannucci F (2008) A search for the progenitors of two Type Ia Supernovae in NGC 1316. Mon Not R Astron Soc 388:421–428ADSCrossRefGoogle Scholar
  94. Maoz D, Mannucci F, Nelemans G (2014) Observational clues to the progenitors of Type Ia Supernovae. Annu Rev Astron Astrophys 52:107–170ADSCrossRefGoogle Scholar
  95. Margutti R, Miliisavljevic D, Soderberg AM et al (2014) A panchromatic view of the restless SN 2009ip reveals the explosive ejection of a massive star envelope. Astrophys J 780(id.21):38Google Scholar
  96. Mattila S, Smartt SJ, Eldridge JJ et al (2008) VLT detection of a red supergiant progenitor of the Type II-P Supernova 2008bk. Astrophys J 688:L91–L94ADSCrossRefGoogle Scholar
  97. Mauerhan JC, Smith N, Filippenko AV et al (2013) The unprecedented 2012 outburst of SN 2009ip: a luminous blue variable star becomes a true supernova. Mon Not R Astron Soc 430:1801–1810ADSCrossRefGoogle Scholar
  98. Mauerhan J, Williams GG, Smith N et al (2014) Multi-epoch spectropolarimetry of SN 2009ip: direct evidence for aspherical circumstellar material. Mon Not R Astron Soc 442:1166–1180ADSCrossRefGoogle Scholar
  99. Maund JR, Smartt SJ (2005) Hubble Space Telescope imaging of the progenitor sites of six nearby core-collapse supernovae. Mon Not R Astron Soc 360:288–304ADSCrossRefGoogle Scholar
  100. Maund JR, Smartt SJ (2009) The disappearance of the progenitors of supernovae 1993J and 2003gd. Science 324:486–488ADSCrossRefGoogle Scholar
  101. Maund JR, Smartt SJ, Kudritzki RP et al (2004) The massive binary companion star to the progenitor of supernova 1993J. Nature 427:129–131ADSCrossRefGoogle Scholar
  102. Maund JR, Smartt SJ, Schweizer F (2005a) Luminosity and mass limits for the progenitor of the Type Ic Supernova 2004gt in NGC 4038. Astrophys J 630:L33–L36ADSCrossRefGoogle Scholar
  103. Maund JR, Smartt SJ, Danziger IJ (2005b) The progenitor of SN 2005cs in the Whirlpool Galaxy. Mon Not R Astron Soc 364:L33–L37ADSCrossRefGoogle Scholar
  104. Maund JR, Fraser M, Ergon M et al (2011) The yellow supergiant progenitor of the Type II Supernova 2011dh in M51. Astrophys J 739(id.L37):5Google Scholar
  105. Maund JR, Fraser M, Smartt SJ et al (2013) Supernova 2012ec: identification of the progenitor and early monitoring with PESSTO. Mon Not R Astron Soc 431:L102–L106ADSCrossRefGoogle Scholar
  106. Maund JR, Reilly E, Mattila S (2014a) A late-time view of the progenitors of five Type IIP supernovae. Mon Not R Astron Soc 438:938–958ADSCrossRefGoogle Scholar
  107. Maund JR, Mattila S, Ramirez-Ruiz E, Eldridge JJ (2014b) A new precise mass for the progenitor of the Type IIP SN 2008bk. Mon Not R Astron Soc 438:1577–1592ADSCrossRefGoogle Scholar
  108. Maund JR, Fraser M, Reilly E et al (2015a) Whatever happened to the progenitors of supernovae 2008cn, 2009kr and 2009md? Mon Not R Astron Soc 447:3207–3217ADSCrossRefGoogle Scholar
  109. Maund JR, Arcavi I, Ergon M et al (2015b) Did the progenitor of SN 2011dh have a binary companion? Mon Not R Astron Soc 454:2580–2585ADSCrossRefGoogle Scholar
  110. McCully C, Jha SW, Foley RJ et al (2014) A luminous, blue progenitor system for the Type Iax supernova 2012Z. Nature 512:54–56ADSCrossRefGoogle Scholar
  111. Milisavljevic D, Fesen RA, Chevalier RA et al (2012) Late-time optical emission from core-collapse supernovae. Astrophys J 751(id.25):14Google Scholar
  112. Nakano S, Itagaki K, Puckett T (2006) Possible Supernova in UGC 4904, vol 666. Central Bureau Electronic Telegrams, Cambridge, MA, USAGoogle Scholar
  113. Ofek EO, Sullivan M, Cenko SB et al (2013) An outburst from a massive star 40 days before a supernova explosion. Nature 494:65–67ADSCrossRefGoogle Scholar
  114. Felipe Olivares E, Hamuy M, Pignata G et al (2010) The standardized candle method for Type II Plateau Supernovae. Astrophys J 715:833–853ADSCrossRefGoogle Scholar
  115. Pastorello A, Crockett RM, Martin R et al (2009) SN 1999ga: a low-luminosity linear Type II supernova? Astron Astrophys 500:1013–1023ADSCrossRefGoogle Scholar
  116. Pastorello A, Cappellaro E, Inserra C et al (2013) Interacting supernovae and supernova impostors: SN 2009ip, is this the End? Astrophys J 767(id.1):19Google Scholar
  117. Phillips MM, Simon JD, Morrell N et al (2013) On the source of the dust extinction in Type Ia Supernovae and the discovery of anomalously strong Na I absorption. Astrophys J 779(id.38):21Google Scholar
  118. Pilyugin LS, Vlchez JM, Thuan TX (2010) New improved calibration relations for the determination of electron temperatures and oxygen and nitrogen abundances in H II regions. Astrophys J 720:1738–1751ADSCrossRefGoogle Scholar
  119. Poznanski D, Butler N, Filippenko AV et al (2009) Improved standardization of Type II-P Supernovae: application to an expanded sample. Astrophys J 694:1067–1079ADSCrossRefGoogle Scholar
  120. Poznanski D, Prochaska JX, Bloom JS (2012) An empirical relation between sodium absorption and dust extinction. Mon Not R Astron Soc 426:1465–1474ADSCrossRefGoogle Scholar
  121. Prieto JL, Kistler MD, Thompson TA et al (2008) Discovery of the dust-enshrouded progenitor of SN 2008S with Spitzer. Astrophys J 681:L9–L12ADSCrossRefGoogle Scholar
  122. Prieto JL, Osip D, Palunas P (2012) Candidate progenitor of the Type II SN 2012A in the Near-IR. Astron Telegram No. 3863Google Scholar
  123. Prieto JL, Brimacombe J, Drake AJ, Howerton S (2013) The 2012 rise of the remarkable Type IIn SN 2009ip. Astrophys J 763(id.L27):5Google Scholar
  124. Radburn-Smith DJ, Dalcanton JJ, De Jong RS, Streich D, Vlajic M, Seth AC et al (2011) The GHOSTS survey. I. Hubble Space Telescope advanced camera for surveys data. Astrophys J Supp 195(id.18):22Google Scholar
  125. Rousseau J, Martin N, Prévot L et al (1978) Studies of the Large Magellanic Cloud stellar content: III. spectral types and V magnitudes of 1822 members. Astron Astrophys Suppl 31:243–260ADSGoogle Scholar
  126. Ryder S, Staveley-Smith L, Dopita M et al (1993) SN 1978K: an extraordinary supernova in the nearby galaxy NGC 1313. Astrophys J 416:167–181ADSCrossRefGoogle Scholar
  127. Sana H, de Mink SE, de Koter A et al (2012) Binary interaction dominates the evolution of massive stars. Science 337:444–446ADSCrossRefGoogle Scholar
  128. Sanders NE, Soderberg AM, Gezari S et al (2015) Toward characterization of the Type IIP supernova progenitor population: a statistical sample of Light Curves from Pan-STARRS1. Astrophys J 799(id.208):23Google Scholar
  129. Schlafly EF, Finkbeiner DP (2011) Measuring reddening with sloan digital sky survey stellar spectra and recalibrating SFD. Astrophys J 737(id.103):13Google Scholar
  130. Schlafly EF, Green G, Finkbeiner DP et al (2014) A map of dust reddening to 4.5 kpc from Pan-STARRS1. Astrophys J 789(id.15):9Google Scholar
  131. Schmidt BP, Kirshner RP, Eastman RG (1992) Expanding photospheres of Type II supernovae and the extragalactic distance scale. Astrophys J 395:366–386ADSCrossRefGoogle Scholar
  132. Sirianni M, Jee MJ, Benítez N et al (2005) The photometric performance and calibration of the Hubble Space Telescope Advanced Camera for Surveys. Publ Astron Soc Pac 117:1049–1112ADSCrossRefGoogle Scholar
  133. Smartt SJ, Gilmore GF, Trentham N et al (2001) An upper mass limit for the progenitor of the Type II-P supernova SN 1999gi. Astrophys J 556:L29–L32ADSCrossRefGoogle Scholar
  134. Smartt SJ, Gilmore GF, Tout CA, Hodgkin ST (2002a) The nature of the progenitor of the Type II-P Supernova 1999em. Astrophys J 565:1089–1100ADSCrossRefGoogle Scholar
  135. Smartt SJ, Vreeswijk PM, Ramirez-Ruiz E et al (2002b) On the progenitor of the Type Ic supernova 2002ap. Astrophys J 572:L147–L151ADSCrossRefGoogle Scholar
  136. Smartt SJ, Maund JR, Gilmore GF et al (2003) Mass limits for the progenitor star of supernova 2001du and other Type II-P supernovae. Mon Not R Astron Soc 343:735–749ADSCrossRefGoogle Scholar
  137. Smartt SJ, Maund JR, Hendry MA et al (2004) Detection of a red supergiant progenitor star of a Type II-Plateau supernova. Science 303:499–503ADSCrossRefGoogle Scholar
  138. Smartt SJ, Eldridge JJ, Crockett RM, Maund JR (2009) The death of massive stars I. Observational constraints on the progenitors of Type II-P supernovae. Mon Not R Astron Soc 395:1409–1437ADSCrossRefGoogle Scholar
  139. Smartt SJ (2015) Observational constraints on the progenitors of core-collapse supernovae: the case for missing high-mass stars. Publ Astron Soc Austr 32(id.e016):22Google Scholar
  140. Smith N, Miller A, Li W et al (2010) Discovery of precursor luminous blue variable outbursts in two recent optical transients: the fitfully variable missing links UGC 2773-OT and SN 2009ip. Astron J 139:1451–1467ADSCrossRefGoogle Scholar
  141. Smith N, Li W, Miller AA et al (2011a) A massive progenitor of the luminous Type IIn Supernova 2010jl. Astrophys J 732(id.63):6Google Scholar
  142. Smith N, Li W, Silverman JM et al (2011b) Luminous blue variable eruptions and related transients: diversity of progenitors and outburst properties. Mon Not R Astron Soc 415:773–810ADSCrossRefGoogle Scholar
  143. Sonneborn G, Altner B, Kirshner RP (1987) The progenitor of SN 1987A – spatially resolved ultraviolet spectroscopy of the supernova field. Astrophys J 323:L35–L39ADSCrossRefGoogle Scholar
  144. Stancliffe RJ, Eldridge JJ (2009) Modelling the binary progenitor of Supernova 1993J. Mon Not R Astron Soc 396:1699–1708ADSCrossRefGoogle Scholar
  145. Stetson PB (1987) DAOPHOT – a computer program for crowded-field stellar photometry. Publ Astron Soc Pac 99:191–222ADSCrossRefGoogle Scholar
  146. Takáts K, Pignata G, Pumo ML et al (2015) SN 2009ib: a Type II-P supernova with an unusually long plateau. Mon Not R Astron Soc 450:3137–3154ADSCrossRefGoogle Scholar
  147. Thöne C, de Ugarte Postigo A, Leloudas G et al (2015) SN 2009ip is now below the proposed progenitor level observed in 1999. Astron Telegram No. 8417Google Scholar
  148. Tomasella L, Cappellaro E, Fraser M et al (2013) Comparison of progenitor mass estimates for the Type IIP SN 2012A. Mon Not R Astron Soc 434:1636–1657ADSCrossRefGoogle Scholar
  149. Torres G (2010) On the use of empirical bolometric corrections for stars. Astron J 140:1158–1162ADSCrossRefGoogle Scholar
  150. Valenti S, Sand D, Stritzinger M et al (2015) Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop. Mon Not R Astron Soc 448:2608–2616ADSCrossRefGoogle Scholar
  151. Van Dyk SD (2013) An echo of supernova 2008bk. Astron J 146(id.24):6Google Scholar
  152. Van Dyk SD, Matheson T (2012) It’s Alive! The supernova impostor 1961V. Astrophys J 746(id.179):10Google Scholar
  153. Van Dyk SD, Peng CY, Barth AJ, Filippenko AV (1999) The environments of supernovae in post-refurbishment Hubble Space Telescope Images. Astron J 118:2331–2349ADSCrossRefGoogle Scholar
  154. Van Dyk SD, Garnavich PM, Filippenko AV et al (2002) The progenitor of supernova 1993J revisited. Publ Astron Soc Pac 114:1322–1332ADSCrossRefGoogle Scholar
  155. Van Dyk SD, Li W, Filippenko AV (2003a) A search for core-collapse supernova progenitors in Hubble Space Telescope Images. Publ Astron Soc Pac 115:1–20ADSCrossRefGoogle Scholar
  156. Van Dyk SD, Li W, Filippenko AV (2003b) On the progenitor of supernova 2001du in NGC 1365. Publ Astron Soc Pac 115:448–452ADSCrossRefGoogle Scholar
  157. Van Dyk SD, Li W, Filippenko AV (2003c) On the progenitor of the Type II-Plateau supernova 2003gd in M74. Publ Astron Soc Pac 115:1289–1295ADSCrossRefGoogle Scholar
  158. Van Dyk SD, Li W, Cenko SB et al (2011) The progenitor of supernova 2011dh/PTF11eon in Messier 51. Astrophys J 741(id.L28):5Google Scholar
  159. Van Dyk SD, Davidge TJ, Elias-Rosa N et al (2012a) Supernova 2008bk and its red supergiant progenitor. Astron J 143(id.19):12Google Scholar
  160. Van Dyk SD, Cenko SB, Poznanski D et al (2012b) The red supergiant progenitor of supernova 2012aw (PTF12bvh) in Messier 95. Astrophys J 756(id.131):9Google Scholar
  161. Van Dyk SD, Zheng W, Clubb KI et al (2013) The progenitor of supernova 2011dh has vanished. Astrophys J 772(id.L32):5Google Scholar
  162. Van Dyk SD, Zheng WK, Fox OD et al (2014) The Type IIb supernova 2013df and its cool supergiant progenitor. Astron J 147(id.37):9Google Scholar
  163. Van Dyk SD, Lee JC, Sabbi E et al (2015a) Supernova progenitors and a light echo in LEGUS galaxies. In: AAS meeting of the American Astronomical Society, Seattle, vol 225, Id.140.25Google Scholar
  164. Van Dyk SD, Lee JC, Anderson J et al (2015b) LEGUS discovery of a light echo around supernova 2012aw. Astrophys J 806(id.195):9Google Scholar
  165. Van Dyk SD, de Mink SE, Zapartas E (2016) Constraints on the binary companion to the SN Ic 1994I progenitor. Astroph J 818:75ADSCrossRefGoogle Scholar
  166. Walborn NR, Prevot ML, Prevot L et al (1989) The spectrograms of Sanduleak -69.202 deg, precursor to supernova 1987A in the Large Magellanic Cloud. Astron Astrophys 219:229–236ADSGoogle Scholar
  167. Weaver TA, Zimmerman GB, Woosley SE (1978) Presupernova evolution of massive stars. Astroph J 225:1021–1029ADSCrossRefGoogle Scholar
  168. White GL, Malin DF (1987) Possible binary star progenitor for SN1987A. Nature 327:36–38ADSCrossRefGoogle Scholar
  169. Williams BF, Peterson S, Murphy J et al (2014a) Constraints for the progenitor masses of 17 Historic core-collapse supernovae. Astroph J 791(id.105):9Google Scholar
  170. Williams BF, Lang D, Dalcanton JJ et al (2014b) The panchromatic hubble andromeda treasury. X. Ultraviolet to infrared photometry of 117 million equidistant stars. Astrophys J Suppl 215(id.9):34Google Scholar
  171. Woosley SE, Weaver TA (1986) The physics of supernova explosions. Annu Rev Astron Astrophys 24:205–253ADSCrossRefGoogle Scholar
  172. Yoon S-C, Cantiello M (2010) Evolution of massive stars with pulsation-driven superwinds during the red supergiant phase. Astrophys J 717:L62–L65ADSCrossRefGoogle Scholar
  173. Yoon S-C, Gräfener G, Vink JS et al (2012) On the nature and detectability of type Ib/c supernova progenitors. Astron Astrophys 544(id.L11):5Google Scholar
  174. Zwicky F (1964) NGC 1058 and its supernova 1961. Astrophys J 139:514–519ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Infrared Processing and Analysis CenterCalifornia Institute of Technology Caltech/IPACPasadenaUSA

Personalised recommendations