Advertisement

Stardust from Supernovae and Its Isotopes

  • Peter HoppeEmail author
Living reference work entry

Abstract

Primitive solar system materials, namely, meteorites, interplanetary dust particles, and cometary matter contain small quantities of nanometer- to micrometer-sized refractory dust grains that exhibit large isotopic abundance anomalies. These grains are older than our solar system and have been named “presolar grains.” They formed in the winds of red giant and asymptotic giant stars and in the ejecta of stellar explosions, i.e., represent a sample of stardust that can be analyzed in terrestrial laboratories for isotopic compositions and other properties. The inventory of presolar grains is dominated by grains from red giant and asymptotic giant branch stars. Presolar grains from supernovae form a minor but important subpopulation. Supernova (SN) minerals identified to date include silicon carbide, graphite, silicon nitride, oxides, and silicates. Isotopic studies of major, minor, and trace elements in these dust grains have provided detailed insights into nucleosynthetic and mixing processes in supernovae and how dust forms in these violent environments.

Keywords

Solar System Asymptotic Giant Branch Silicon Isotope Molybdenum Isotope Asymptotic Giant Branch Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amari S, Anders E, Virag A, Zinner E (1990) Interstellar graphite in meteorites. Nature 345:238–240ADSCrossRefGoogle Scholar
  2. Amari S, Hoppe P, Zinner E, Lewis RS (1992) Interstellar SiC with unusual isotopic compositions: grains from a supernova? Astrophys J 394:L43–L46ADSCrossRefGoogle Scholar
  3. Amari S, Zinner E, Lewis RS (1996)41Ca in presolar graphite of supernova origin. Astrophys J 470:L101–L104Google Scholar
  4. Amari S, Zinner E, Lewis RS (1999) A singular presolar SiC grain with extreme29, 30Si excesses. Astrophys J 517:L59–L62ADSCrossRefGoogle Scholar
  5. Amari S, Zinner E, Gallino R (2014) Presolar graphite from the Murchison meteorite: an isotopic study. Geochim Cosmochim Acta 133:479–522ADSCrossRefGoogle Scholar
  6. Bernatowicz T, Amari S, Zinner E, Lewis RS (1991) Interstellar grains within interstellar grains. Astrophys J 373:L73–L76ADSCrossRefGoogle Scholar
  7. Bernatowicz T, Fraundorf G, Ming T, Anders E, Wopenka B, Zinner E, Fraundorf P (1987) Evidence for interstellar SiC in the Murray carbonaceous meteorite. Nature 330:728–730ADSCrossRefGoogle Scholar
  8. Black DC, Pepin RO (1969) Trapped neon in meteorites. II. Earth Planet Sci Lett 6:395–405ADSCrossRefGoogle Scholar
  9. Cherchneff I (2013) Dust production in supernovae. In: The life cycle of dust in the Universe, Taipei. PoS(LCDU 2013), p 18Google Scholar
  10. Choi B-G, Huss GR, Wasserburg GJ, Gallino R (1998) Presolar corundum and spinel in ordinary chondrites: origins from AGB stars and a supernova. Science 282:1284–1289ADSCrossRefGoogle Scholar
  11. Choi B-G, Wasserburg GJ, Huss GR (1999) Circumstellar hibonite and corundum and nucleosynthesis in asymptotic giant branch stars. Astrophys J 522:L133–L136ADSCrossRefGoogle Scholar
  12. Clayton DD, Arnett WD, Kane J, Meyer BS (1997) Type X silicon carbide presolar grains: Type Ia supernova condensates? Astrophys J 486:824–834ADSCrossRefGoogle Scholar
  13. Croat TK, Bernatowicz TJ, Amari S, Messenger S, Stadermann FJ (2003) Structural, chemical, and isotopic microanalytical investigations of graphite from supernovae. Geochim Cosmochim Acta 67:4705–4725ADSCrossRefGoogle Scholar
  14. Floss C, Stadermann F (2009) Auger nanoprobe analysis of presolar ferromagnesian silicate grains from primitive CR chondrites QUE 99177 and MET 00426. Geochim Cosmochim Acta 73:2415–2440ADSCrossRefGoogle Scholar
  15. Groopman E, Zinner E, Amari S, Gyngard F, Hoppe P, Jadhav M, Lin Y, Xu YC, Marhas KK, Nittler LR (2015) Inferred initial 26Al/27Al ratios in presolar stardust grains from supernovae are higher than previously estimated. Astrophys J 809:31(16pp)ADSCrossRefGoogle Scholar
  16. Gyngard F, Zinner E, Nittler LR, Morgand A, Stadermann FJ, Hynes KM (2010) Automated NanoSIMS measurements of spinel stardust from the Murray meteorite. Astrophys J 717:107–120ADSCrossRefGoogle Scholar
  17. Hoppe P (2011) Measurements of presolar grains. In: Proceedings of the 11th symposium on nuclei in the cosmos (NIC XI), Heidelberg, 19 July–23 July 2010. Available online at http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=100#session-121
  18. Hoppe P (2015) NanoSIMS and more: New tools in nuclear astrophysics. J Phys Conf Ser 665:012075ADSCrossRefGoogle Scholar
  19. Hoppe P, Besmehn A (2002) Evidence for extinct Vanadium-49 in presolar silicon carbide grains from supernovae. Astrophys J 576:L69–L72ADSCrossRefGoogle Scholar
  20. Hoppe P, Fujiya W, Zinner E (2012) Sulfur molecule chemistry in supernova ejecta recorded by silicon carbide stardust. Astrophys J 745:L26ADSCrossRefGoogle Scholar
  21. Hoppe P, Leitner J, Gröner E, Marhas KK, Meyer BS, Amari S (2010) NanoSIMS studies of small presolar SiC grains: new insights into supernova nucleosynthesis, chemistry, and dust formation. Astrophys J 719:1370–1384ADSCrossRefGoogle Scholar
  22. Hoppe P, Strebel R, Eberhardt P, Amari S, Lewis RS (2000) Isotopic properties of silicon carbide X grains from the Murchison meteorite in the size range 0.5–1.5 um. Meteorit Planet Sci 35:1157–1176ADSCrossRefGoogle Scholar
  23. Hutcheon ID, Huss GR, Fahey AJ, Wasserburg GJ (1994) Extreme 26Mg and17O enrichments in an Orgueil corundum: identification of a presolar oxide grain. Astrophys J 425:L97–L100ADSCrossRefGoogle Scholar
  24. Hynes KM, Gyngard F (2009) The presolar grain data base. http://presolar.wustl.edu/~pgd.LunarPlanetSci40:abstract#1398
  25. Jadhav M, Zinner E, Amari S, Maruoka T, Marhas KK, Gallino R (2013) Multi-element isotopic analyses of presolar graphite grains from Orgueil. Geochim Cosmochim Acta 113:193–224ADSCrossRefGoogle Scholar
  26. Lewis RS, Tang M, Wacker JF, Anders E, Steel E (1987) Interstellar diamonds in meteorites. Nature 326:160–162ADSCrossRefGoogle Scholar
  27. Lin Y, Gyngard F, Zinner E (2010) Isotopic analysis of supernova SiC and Si3N4grains from the Qingzhen (EH3) chondrite. Astrophys J 709:1157–1173ADSCrossRefGoogle Scholar
  28. Messenger S, Keller LP, Lauretta DS (2005) Supernova olivine from cometary dust. Science 309:737–741ADSCrossRefGoogle Scholar
  29. Messenger S, Keller LP, Stadermann F, Walker RM, Zinner E (2003) Samples of stars beyond the solar system: silicate grains in interplanetary dust. Science 300:105–108ADSCrossRefGoogle Scholar
  30. Meyer BS, Clayton DD, The L-S (2000) Molybdenum and zirconium isotopes from a supernova neutron burst. Astrophys J 540:L49–L52ADSCrossRefGoogle Scholar
  31. Nguyen A, Nittler LR, Stadermann F, Stroud R, Alexander CMOD (2010) Coordinated analyses of presolar grains in the Allan Hills 77307 and Queen Elizabeth Range 99177 meteorites. Astrophys J 719:166–189ADSCrossRefGoogle Scholar
  32. Nguyen AN, Zinner E (2004) Discovery of ancient silicate stardust in a meteorite. Science 303:1496–1499ADSCrossRefGoogle Scholar
  33. Nittler LR, Alexander CMOD, Gallino R, Hoppe P, Nguyen AN, Stadermann FJ, Zinner EK (2008) Aluminum-, calcium- and titanium-rich oxide stardust in ordinary chondrite meteorites. Astrophys J 682:1450–1478ADSCrossRefGoogle Scholar
  34. Nittler LR, Alexander CMOD, Gao X, Walker RM, Zinner E (1997) Stellar sapphires: the properties and origins of presolar Al2O3 in meteorites. Astrophys J 483:475–495ADSCrossRefGoogle Scholar
  35. Nittler LR, Alexander CMOD, Gao X, Walker RM, Zinner EK (1994) Interstellar oxide grains from the Tieschitz ordinary chondrite. Nature 370:443–446ADSCrossRefGoogle Scholar
  36. Nittler LR, Amari S, Zinner E, Woosley SE, Lewis RS (1996) Extinct 44Ti in presolar graphite and SiC: proof of a supernova origin. Astrophys J 462:L31–L34ADSCrossRefGoogle Scholar
  37. Nittler LR, Hoppe P, Alexander CMOD, Amari S, Eberhardt P, Gao X, Lewis RS, Strebel R, Walker RM, Zinner E (1995) Silicon nitride from supernovae. Astrophys J 453:L25–L28ADSCrossRefGoogle Scholar
  38. Pignatari M, Wiescher M, Timmes FX, Boer RJd, Thielemann FK, Fryer C, Heger A, Herwig F, Hirschi R (2013a) Production of carbon-rich presolar grains from massive stars. Astrophys J 767:L22 (6pp)Google Scholar
  39. Pignatari M, Zinner E, Bertolli MG, Trappitsch R, Hoppe P, Rauscher T, Fryer C, Herwig F, Hirschi R, Timmes FX, Thielemann F-K (2013b) Silicon carbide grains of type C provide evidence for the production of the unstable isotope 32Si in supernovae. Astrophys J 771:L7(5pp)ADSCrossRefGoogle Scholar
  40. Pignatari M, Zinner E, Hoppe P, Jordan CJ, Gibson BK, Trappitsch R, Herwig F, Fryer C, Hirschi R, Timmes FX (2015) Carbon-rich presolar grains from massive stars: subsolar 12C/13C and 14N/15N ratios and the mystery of 15N. Astrophys J 808:L43(6pp)ADSCrossRefGoogle Scholar
  41. Rauscher T, Heger A, Hoffman RD, Woosley SE (2002) Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys J 576:323–348ADSCrossRefGoogle Scholar
  42. Reynolds JH, Turner G (1964) Rare gases in the chondrite Renazzo. J Geophys Res 69:3263–3281ADSCrossRefGoogle Scholar
  43. Richter S, Ott U, Begemann F (1998) Tellurium in pre-solar diamonds as an indicator for rapid separation of supernova ejecta. Nature 391:261–263ADSCrossRefGoogle Scholar
  44. Travaglio C, Gallino R, Amari S, Zinner E, Woosley S, Lewis RS (1999) Low-density graphite grains and mixing in type II supernovae. Astrophys J 510:325–354ADSCrossRefGoogle Scholar
  45. Vollmer C, Hoppe P, Stadermann FJ, Floss C, Brenker F (2009) NanoSIMS analysis and Auger electron spectroscopy of silicate and oxide stardust from the carbonaceous chondrite Acfer 094. Geochim Cosmochim Acta 73:7127–7149ADSCrossRefGoogle Scholar
  46. Zinner E (2014) Presolar grains. In: Davis AM (ed) Meteorites and cosmochemical processes. Treatise on geochemistry update 2, vol 1. Elsevier, Amsterdam, pp 181–213Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Particle Chemistry DepartmentMax Planck Institute for Chemistry55128 MainzGermany

Personalised recommendations