Skip to main content

Immunotoxicology

Critical Care Toxicology

Abstract

This chapter describes the administration of specific immunoglobulin antibodies or antibody fragments (IgG, Fab, F(ab′)2, or sFv) to treat toxic exposures. Binding of the antibody to the target molecules or antigen [1] is intended to result in partial or complete neutralization of the toxic effect of the target, a concentration gradient of free target molecules encouraging efflux into the vascular compartment, and ultimate elimination of the antibody/target complex by renal or reticuloendothelial system routes [2–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kelly KJ, Meehan SM, Colvin RB, et al. Protection from toxicant-mediated renal injury in the rat with anti-CD54 antibody. Kidney Int. 1999;56:922–31.

    Article  CAS  PubMed  Google Scholar 

  2. Arend WP, Silverblatt FJ. Serum disappearance and catabolism of homologous immunoglobulin fragments in rats. Clin Exp Immunol. 1975;22:502–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sabouraud A, Scherrmann JM. Immunotherapy of drug poisoning. Therapie. 1994;49:41–8.

    CAS  PubMed  Google Scholar 

  4. Riviere G, Choumet V, Saliou B, et al. Absorption and elimination of viper venom after antivenom administration. J Pharmacol Exp Ther. 1998;285:490–5.

    CAS  PubMed  Google Scholar 

  5. Ujhelyi MR, Robert S. Pharmacokinetic aspects of digoxin-specific Fab therapy in the management of digitalis toxicity. Clin Pharmacokinet. 1995;28:483–93.

    Article  CAS  PubMed  Google Scholar 

  6. Lemeulle C, Chardes T, Montavon C, et al. Anti-digoxin scFv fragments expressed in bacteria and in insect cells have different antigen binding properties. FEBS Lett. 1998;423:159–66.

    Article  CAS  PubMed  Google Scholar 

  7. Clark RF, Selden BS, Curry SC. Digoxin-specific Fab fragments in the treatment of oleander toxicity in a canine model. Ann Emerg Med. 1991;20:1073–7.

    Article  CAS  PubMed  Google Scholar 

  8. Cummins RO, Haulman J, Quan L, et al. Near-fatal Yew Berry intoxication treated with external cardiac pacing and digoxin-specific Fab antibody fragments. Ann Emerg Med. 1990;19:38–43.

    Article  CAS  PubMed  Google Scholar 

  9. Brubacher JR, Ravikumar PR, Bania T, et al. Treatment of toad venom poisoning with digoxin-specific Fab fragments. Chest. 1996;110:1282–8.

    Article  CAS  PubMed  Google Scholar 

  10. Sabouraud A, Urtizberea M, Cano NJ, et al. Colchicine-specific Fab fragments alter colchicine disposition in rabbits. J Pharmacol. 1992;260:1214–9.

    CAS  Google Scholar 

  11. Baud FJ, Sabouraud A, Vicaut E, et al. Brief report: treatment of severe colchicine overdose with colchicine-specific Fab fragments. N Engl J Med. 1995;3:642–5.

    Article  Google Scholar 

  12. Owens SM, Mayersohn M. Phencyclidine-specific Fab fragments alter phencyclidine disposition in dogs. Drug Metab Dispos. 1986;14:52–8.

    CAS  PubMed  Google Scholar 

  13. McClurkan MB, Valentine JL, Arnold L, Owens SM. Disposition of a monoclonal anti-phencyclidine Fab fragment of immunoglobulin G in rats. J Pharmacol Exp Ther. 1993;266:1439–45.

    CAS  PubMed  Google Scholar 

  14. Valentine JL, Arnold LW, Owens SM. Anti-phencyclidine monoclonal Fab fragments markedly alter phencyclidine pharmacokinetics in rats. J Pharmacol Exp Ther. 1994;269:1079–85.

    CAS  PubMed  Google Scholar 

  15. Chen N, Bowles MR, Pond SM. Prevention of paraquat toxicity in suspensions of alveolar type II cells by paraquat-specific antibodies. Hum Exp Toxicol. 1994;13:551–7.

    Article  PubMed  Google Scholar 

  16. Devlin CM, Bowles MR, Gordon RB, Pond SM. Production of a paraquat-specific murine single chain Fv fragment. J Biochem. 1995;118:480–7.

    CAS  PubMed  Google Scholar 

  17. Nagao M. Production and toxicological application of anti-paraquat antibodies. Nippon Hoigaku Zasshi. 1989;43:134–47.

    CAS  PubMed  Google Scholar 

  18. Pentel PR, Ross CA, Sidki A, et al. Reversal of desipramine toxicity in rats with polyclonal drug-specific antibody Fab fragments. J Lab Clin Med. 1994;123:387–93.

    CAS  PubMed  Google Scholar 

  19. Pentel PR, Scarlett W, Ross CA, et al. Reduction of desipramine cardiotoxicity and prolongation of survival in rats with the use of polyclonal drug-specific antibody Fab fragments. Ann Emerg Med. 1995;26:334–40.

    Article  CAS  PubMed  Google Scholar 

  20. Keyler DE, Le Couteur DG, Pond SM, et al. Effects of specific antibody Fab fragments on desipramine pharmacokinetics in the rat and in the isolated perfused liver. J Pharmacol Exp Ther. 1995;272:1117–23.

    CAS  PubMed  Google Scholar 

  21. Lin G, Pentel PR, Shelver W, et al. Bacterial expression and characterization of an anti-desipramine single-chain antibody fragment. Int J Immunopharmacol. 1996;18:729–38.

    Article  CAS  PubMed  Google Scholar 

  22. Heard K, O’Malley GF, Dart RC. Treatment of amitriptyline poisoning with ovine antibody to tricyclic antidepressants. Lancet. 1999;354:1614–5.

    Article  CAS  PubMed  Google Scholar 

  23. Chen N, Bowles MR, Pond SM. Polyclonal amanitin-specific antibodies: production and cytoprotective properties in vitro. Biochem Pharmacol. 1993;46:327–9.

    Article  CAS  PubMed  Google Scholar 

  24. Faulstich H, Kirchner K, Derenzini M. Strongly enhanced toxicity of the mushroom toxin α-amanitin by an amatoxin-specific Fab or monoclonal antibody. Toxicon. 1988;26:491–9.

    Article  CAS  PubMed  Google Scholar 

  25. Metzger JF, Lewis Jr GE. Human-derived immune globulins for the treatment of botulism. Rev Infect Dis. 1979;1:689–92.

    Article  CAS  PubMed  Google Scholar 

  26. Hatheway CH, Snyder JD, Seals JE, et al. Antitoxin levels in botulism patients treated with trivalent equine botulism antitoxin to toxin types A, B and E. J Infect Dis. 1984;150:407–12.

    Article  CAS  PubMed  Google Scholar 

  27. Pless DD, Torres ER, Reinke EK, Bavari S. High-affinity protective antibodies to the binding domain of boulinum nuerotoxin Type A. Infect Immun. 2001;69:570–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hill RE, Heard K, Bogdan GM, et al. Attenuation of verapamil-induced myocardial toxicity in an ex-vivo rat model using a verapamil-specific ovine immunoglobin. Acad Emerg Med. 2001;8:950–5.

    Article  CAS  PubMed  Google Scholar 

  29. Russell RE, Ruzic N, Gonzales H. Effectiveness of antivenin (Crotalidae polyvalent) following injection of Crotalus venom. Toxicon. 1973;11:461–4.

    Article  CAS  PubMed  Google Scholar 

  30. Bolanos R, Cerdas L, Taylor R. The production and characteristics of a coral snake (Micrurus mipartitus hertwigi) antivenin. Toxicon. 1975;12:139–42.

    Article  Google Scholar 

  31. Sullivan Jr JB, Russell FE. Isolation and purification of antibodies to rattlesnake venom by affinity chromatography. Proc West Pharmacol Soc. 1982;25:185–92.

    CAS  PubMed  Google Scholar 

  32. Karlson-Stiber C, Persson H, Heath A, et al. First clinical experiences with specific sheep Fab fragments in snake bite: report of a multicentre study of Vipera berus envenoming. J Intern Med. 1997;241:53–8.

    Article  CAS  PubMed  Google Scholar 

  33. Dart RC, McNally J. Efficacy, safety, and use of snake antivenoms in the United States. Ann Emerg Med. 2001;37:181–8.

    Article  CAS  PubMed  Google Scholar 

  34. Dart RC, Sidki A, Sullivan Jr JB, et al. Ovine desipramine antibody fragments reverse desipramine cardiovascular toxicity in the rat. Ann Emerg Med. 1996;27:309–15.

    Article  CAS  PubMed  Google Scholar 

  35. Borges A, Tsushima RG, Backx PH. Antibodies against Tityus discrepans venom do not abolish the effect of Tityus serrulatus venom on the rat sodium and potassium channels. Toxicon. 1999;37:867–81.

    Article  CAS  PubMed  Google Scholar 

  36. Calderon-Aranda ES, Riviere G, Choumet V, et al. Pharmacokinetics of the toxic fraction of Centruroides limpidus limpidus venom in experimentally envenomed rabbits and effects of immunotherapy with specific F(ab′)2. Toxicon. 1999;37:771–82.

    Article  CAS  PubMed  Google Scholar 

  37. LoVecchio F, Welch S, Klemens J, et al. Incidence of immediate and delayed hypersensitivity to Centruroides antivenom. Ann Emerg Med. 1999;34:669–70.

    Article  Google Scholar 

  38. Devaux C, Moreau E, Goyffon R, et al. Construction and functional evaluation of a single-chain antibody fragment that neutralizes toxin AahI from the venom of the scorpion Androctonus australis hector. Eur J Biochem. 2000;268:694–702.

    Article  Google Scholar 

  39. Ghalim N, El-Hafny B, Sebti F, et al. Scorpion envenomation and serotherapy in Morocco. Am J Trop Med Hyg. 2000;62:277–83.

    CAS  PubMed  Google Scholar 

  40. Graudins A, Padula M, Broady K, Nicholson GM. Red-black spider (Latrodectus hasselti) antivenom prevents the toxicity of widow spider venoms. Ann Emerg Med. 2001;37:154–60.

    Article  CAS  PubMed  Google Scholar 

  41. Clark RF. The safety and efficacy of antivenin Latrodectus mactans. J Toxicol Clin Toxicol. 2001;39:125–7.

    Article  CAS  PubMed  Google Scholar 

  42. Daly FF, Hill RE, Bodgan GM, Dart RC. Neutralization of Latrodectus mactans and L. hesperus venom by redback spider (L. hasseltii) antivenom. J Toxicol Clin Toxicol. 2001;39:119–23.

    Article  CAS  PubMed  Google Scholar 

  43. Schumacher MJ, Egen NB, Tanner D. Neutralization of bee venom lethality by immune serum antibodies. Am J Trop Med Hyg. 1996;55:197–201.

    CAS  PubMed  Google Scholar 

  44. Jones RG, Coreling RL, Bhogal G, Landon J. A novel Fab-based antivenom for the treatment of mass bee attacks. Am J Trop Med Hyg. 1999;61:361–6.

    CAS  PubMed  Google Scholar 

  45. MICROMEDEX. Snakes: Crotalinae (management/treatment protocol). In: Rumack BH, Rider PK, Gelman CR, editors. Poisindex system. Englewood: MICROMEDEX; 2002.

    Google Scholar 

  46. LoVecchio F, DeBus DM. Snakebite envenomation in children: a 10-year retrospective review. Wilderness Environ Med. 2001;12:184–9.

    Article  CAS  PubMed  Google Scholar 

  47. Heard K, O’Malley GF, Dart RC. Antivenom therapy in the Americas. Drugs. 1999;58:5–15.

    Article  CAS  PubMed  Google Scholar 

  48. Fey H. A simple procedure for the production of Fab from bovine IgG as an absorbent in the preparation of class-specific anti-immunoglobulin. Immunochemistry. 1975;12:235–9.

    Article  CAS  PubMed  Google Scholar 

  49. Prince HE, Folds JD, Spitznagel JK. In vitro production of a biologically active Fab2-like fragment by digestion of human IgG rheumatoid factor with human polymorphonuclear leukocyte elastase. Mol Immunol. 1979;16:975–8.

    Article  CAS  PubMed  Google Scholar 

  50. Dos Santos MC, D’Imperio MR, Furtado GC, et al. Purification of F(ab′)2 anti-snake venom by caprylic acid: a fast method for obtaining IgG fragments with high neutralization activity, purity and yield. Toxicon. 1989;27:297–303.

    Article  PubMed  Google Scholar 

  51. Russell FE, Sullivan JB, Egen NB, et al. Preparation of a new antivenin by affinity chromatography. Am J Trop Med Hyg. 1985;34:141–50.

    CAS  PubMed  Google Scholar 

  52. Smith TW, Lloyd BL, Spicer N, Haber E. Immunogenicity and kinetics of distribution and elimination of sheep digoxin-specific IgG and Fab fragments in the rabbit and baboon. Clin Exp Immunol. 1979;36:384–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Otero-Patino R, Cardose JLC, Higashi HG, et al. A randomized, blinded, comparative trial of one pepsin-digested and two whole IgG antivenoms for Bothrops snake bites in Uraba, Colombia. Am J Trop Med Hyg. 1998;58:183–9.

    CAS  PubMed  Google Scholar 

  54. Meyer WP, Habib AG, Onayade AA, et al. First clinical experiences with a new ovine Fab Echis ocellatus snake bite antivenom in Nigeria: randomized comparative trial with Institute Pasteur serum (Ipser) Africa antivenom. Am J Trop Med Hyg. 1997;56:291–300.

    CAS  PubMed  Google Scholar 

  55. Karlson EW, Sudarsky L, Ruderman E, et al. Treatment of stiff-man syndrome with intravenous immune globulin. Arthritis Rheum. 1994;37:915–8.

    Article  CAS  PubMed  Google Scholar 

  56. Ariaratnam CA, Sjostrom L, Raziek Z, et al. An open, randomized comparative trial of two antivenoms for the treatment of envenoming by Sri Lankan Russell’s viper (Diaboia russelii russelii). Trans R Soc Trop Med Hyg. 2001;95:74–80.

    Article  CAS  PubMed  Google Scholar 

  57. Dart RC, Seifert SA, Boyer LV, et al. A randomized multicenter trial of Crotalinae polyvalent immune Fab (ovine) antivenom for the treatment for crotaline snakebite in the United States. Arch Intern Med. 2001;161:2030–6.

    Article  CAS  PubMed  Google Scholar 

  58. Milenic DE, Yokota T, Filpula DR, et al. Construction, binding properties, metabolism and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. 1991;51:6363–71.

    CAS  PubMed  Google Scholar 

  59. Brinkmann U, Reiter Y, Jung S-H, et al. A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc Natl Acad Sci U S A. 1993;90:7538–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shelver WL, Keyler DE, Lin G, et al. Effects of recombinant drug-specific single chain antibody Fv fragment on [3H]-desipramine distribution in rats. Biochem Pharmacol. 1996;51:531–7.

    Article  CAS  PubMed  Google Scholar 

  61. Funayama JC, Pucca MB, Roncolato EC, Bertolini TB, Campos LB, Barbosa JE. Production of human antibody fragments binding to melittin and phospholipase A2 in Africanised bee venom: minimising venom toxicity. Basic Clin Pharmacol Toxicol. 2012;110:290–7. doi:10.1111/j.1742-7843.2011.00821.

    Article  CAS  PubMed  Google Scholar 

  62. Almquist KC, McLean MD, Niu Y, Byrne G, Olea-Popelka FC, Murrant C, Barclay J, Hall JC. Expression of an anti-botulinum toxin A neutralizing single-chain Fv recombinant antibody in transgenic tobacco. Vaccine. 2006;24(12):2079–86. Epub 2005 Dec 1.

    Article  CAS  PubMed  Google Scholar 

  63. Dong JX, Xie X, Hu DW, Chen SC, He YS, Beier RC, Shen YD, Sun YM, Xu ZL, Wang H, Yang JY. Codon modification for the DNA sequence of a single-chain Fv antibody against clenbuterol and expression in Pichia pastoris. Appl Microbiol Biotechnol. 2014;98(8):3679–89. doi:10.1007/s00253-013-5324-9. Epub 2013 Nov 5.

    Article  CAS  PubMed  Google Scholar 

  64. Hu X, Spada S, White S, Hudson S, Magner E, Wall JG. Adsorption and activity of a domoic acid binding antibody fragment on mesoporous silicates. J Phys Chem B. 2006;110(37):18703–9.

    Article  CAS  PubMed  Google Scholar 

  65. Maynard JA, Maassen CB, Leppla SH, Brasky K, Patterson JL, Iverson BL, Georgiou G. Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat Biotechnol. 2002;20(6):597–601.

    Article  CAS  PubMed  Google Scholar 

  66. Nelson A. Antibody fragments. MAbs. 2010;2(1):77–83.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Nydegger UE, Mohacsi PJ, Escher R, Morell A. Clinical use of intravenous immunoglobulins. Vox Sang. 2000;78 Suppl 2:191–5.

    CAS  PubMed  Google Scholar 

  68. Jefferis R, Lund J, Pound JD. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol Rev. 1998;163:59–76.

    Article  CAS  PubMed  Google Scholar 

  69. Nydegger UE, Sturzenegger M. Adverse effects of intravenous immunoglobulin therapy. Drug Saf. 1999;21:171–85.

    Article  CAS  PubMed  Google Scholar 

  70. Leon G, Monge M, Rojas E, et al. Comparison between IgG and F(ab′)(2) polyvalent antivenoms: neutralization of systemic effects induced by Bothrops asper venom in mice, extravasation to muscle tissue, and potential for induction of adverse reactions. Toxicon. 2001;39:793–801.

    Article  CAS  PubMed  Google Scholar 

  71. Grainger RJ, Ko S, Koslov E, et al. Effect of shear on human insulin in zinc suspension. Appl Biochem Biotechnol. 2000;84–86:761–8.

    Article  PubMed  Google Scholar 

  72. Inazu K, Shima K. Freeze-drying and quality evaluation of protein drugs. Dev Biol Stand. 1992;74:307–22.

    CAS  PubMed  Google Scholar 

  73. Gerring D, King TR, Branton R. Validating a faster method for reconstitution of Crotalidae Polyvalent Immune Fab (ovine). Toxicon. 2013;69:42–9. doi:10.1016/j.toxicon.2012.12.005. Epub 2013 Jan 7.

    Article  CAS  PubMed  Google Scholar 

  74. Ho M, Silamut K, White NJ, et al. Pharmacokinetics of three commercial antivenoms in patients evenomed by the Malayan pit viper, Calloselasma rhodostoma, in Thailand. Am J Trop Med Hyg. 1990;42:260–6.

    CAS  PubMed  Google Scholar 

  75. Sorensen HNH, Faber V, Svehag S-E. Circulating immune complexes, complement activation kinetics and serum sickness following treatment with heterologous anti-snake venom globulin. Scand J Immunol. 1978;7:25–33.

    Article  PubMed  Google Scholar 

  76. FDA. Botulism Immune Globulin Invtravenous (Human) (BIG-IV). Available http://www.fda.gov/downloads/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/LicensedProductsBLAs/FractionatedPlasmaProducts/ucm117169.pdf. Accessed16 Jan 2016.

  77. Anavip Package Insert. http://www.fda.gov/downloads/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/LicensedProductsBLAs/FractionatedPlasmaProducts/UCM446175.pdf. Accessed 12 May. 2015.

  78. Vázquez H, Chávez-Haro A, García-Ubbelohde W, Mancilla-Nava R, Paniagua-Solís J, Alagón A, Sevcik C. Pharmacokinetics of a F(ab')2 scorpion antivenom in healthy human volunteers. Toxicon. 2005;46(7):797–805. Epub 2005 Sep 28.

    Article  PubMed  CAS  Google Scholar 

  79. FDA. Botulism antitoxin Heptavalent highlights of prescribing information. Available http://www.fda.gov/downloads/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/LicensedProductsBLAs/FractionatedPlasmaProducts/UCM345147.pdf. Accessed16 Jan 2016.

  80. Seifert SA. Pharmacokinetic analysis of a crotalid Fab antivenom and theoretical considerations for the prevention of coagulopathic recurrence. J Toxicol Clin Toxicol. 1998;36:526–7.

    Google Scholar 

  81. Thanh-Barthet CV, Urtizberea M, Sabouraud AE, et al. Development of a sensitive radioimmunoassay for Fab fragments: application to Fab pharmacokinetics in humans. Pharm Res. 1993;10:692–5.

    Article  CAS  PubMed  Google Scholar 

  82. Schaumann W, Kaufmann B, Neubert P, Smolarz A. Kinetics of the Fab fragments of digoxin antibodies and of bound digoxin in patients with severe digoxin intoxication. Eur J Clin Pharmacol. 1986;30:527–33.

    Article  CAS  PubMed  Google Scholar 

  83. Allen NM, Dunham GD, Sailstad JM, Findlay JWA. Clinical and pharmacokinetic profiles of digoxin immune Fab in four patients with renal impairment. DICP. 1991;25:1315–20.

    CAS  PubMed  Google Scholar 

  84. Caspi O, Zylber-Katz E, Gotsman O, et al. Digoxin intoxication in a patient with end-stage renal disease: efficiency of digoxin-specific Fab antibody fragments and peritoneal dialysis. Ther Drug Monit. 1997;19:510–5.

    Article  CAS  PubMed  Google Scholar 

  85. Azuma J, Kurimoto T, Tsuji S, et al. Phase I study on human monoclonal antibody against cytomegalovirus: pharmacokinetics and immunogenicity. J Immunother. 1991;10:278–85.

    Article  CAS  PubMed  Google Scholar 

  86. Bazin-Redureau MI, Renard CB, Scherrmann J-MG. Pharmacokinetics of heterologous and homologous immunoglobulin G, F(ab′)2 and Fab after intravenous administration in the rat. J Pharm Pharmacol. 1997;49:277–81.

    Article  CAS  PubMed  Google Scholar 

  87. Covell DG, Barbet J, Holton OD, et al. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice. Cancer Res. 1986;46:3969–78.

    CAS  PubMed  Google Scholar 

  88. Polymenis M, Stollar BD. Domain interactions and antigen binding of recombinant anti-Z-DNA antibody variable domains: the role of heavy and light chains measured by surface plasmon resonance. J Immunol. 1995;154:2198–208.

    CAS  PubMed  Google Scholar 

  89. Cohen P, Laune D, Teulon I, et al. Interaction of the octapeptide angiotensin II with a high-affinity single-chain Fv and with peptides derived from the antibody paratope. J Immunol Methods. 2001;254:147–60.

    Article  CAS  PubMed  Google Scholar 

  90. Lomonte B, Leon G, Hanson LA. Similar effectiveness of Fab and F(ab′)2 antivenoms in the neutralization of hemorrhagic activity of Vipera berus snake venom in mice. Toxicon. 1996;34:1197–202.

    Article  CAS  PubMed  Google Scholar 

  91. Consroe P, Egen NB, Russell FE, et al. Comparison of a new ovine antigen binding fragment (Fab) antivenin for United States Crotalidae with the commercial antivenin for protection against venom-induced lethality in mice. Am J Trop Med Hyg. 1995;53:507–10.

    CAS  PubMed  Google Scholar 

  92. Seifert SA, Boyer LV, Dart RC, et al. Relationship of venom effects to venom antigen and antivenom serum concentrations in a patient with Crotalus atrox envenomation treated with a Fab antivenom. Ann Emerg Med. 1997;30:49–53.

    Article  CAS  PubMed  Google Scholar 

  93. Seifert SA, Boyer LV. Recurrence phenomena after immunoglobulin therapy for snake envenomations: part 1. Pharmacokinetics and pharmacodynamics of immunoglobulin antivenoms and related antibodies. Ann Emerg Med. 2001;37:189–95.

    Article  CAS  PubMed  Google Scholar 

  94. Paniagua D, Jiménez L, Romero C, Vergara I, Calderón A, Benard M, Bernas MJ, Rilo H, de Roodt A, D’ Suze G, Witte MH, Boyer L, Alagón A. Lymphatic route of transport and pharmacokinetics of Micrurus fulvius (coral snake) venom in sheep. Lymphology. 2012;45(4):144–53.

    CAS  PubMed  Google Scholar 

  95. van Helden DF, Thomas PA, Dosen PJ, Imtiaz MS, Laver DR, Isbister GK. Pharmacological approaches that slow lymphatic flow as a snakebite first aid. PLoS Negl Trop Dis. 2014;8(2):e2722. doi:10.1371/journal.pntd.0002722.eCollection2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Leon G, Rojas G, Lomonte B, Gutierrez JM. Immunoglobulin G and F(ab′)2 polyvalent antivenoms do not differ in their ability to neutralize hemorrhage, edema and myonecrosis induced by Bothrops asper (Terciopelo) snake venom. Toxicon. 1997;35:1627–37.

    Article  CAS  PubMed  Google Scholar 

  97. Gutierrez JM, Leon G, Bojas G, et al. Neutralization of local tissue damage induced by Bothrops asper (Terciopelo) snake venom. Toxicon. 1998;36:1529–37.

    Article  CAS  PubMed  Google Scholar 

  98. Bogdan GM, Dart RC, Falbo SC, et al. Recurrent coagulopathy after antivenom treatment of crotalid snakebite. South Med J. 2000;93:562–6.

    Article  CAS  PubMed  Google Scholar 

  99. Humphreys DP, Vetterlien OM, Chapman AP, et al. F(ab′)2 molecules made from Escherichia coli produced Fab′ with hinge sequences conferring increased serum survival in an animal model. J Immunol Methods. 1998;217:1–10.

    Article  CAS  PubMed  Google Scholar 

  100. Hazara AM. Recurrence of digoxin toxicity following treatment with digoxin immune fab in a patient with renal impairment. QJM. 2014;107(2):143–4.

    Article  CAS  PubMed  Google Scholar 

  101. Chatenoud L. Humoral immune response against OKT3. Transplant Proc. 1993;25:68–73.

    CAS  PubMed  Google Scholar 

  102. Bolanos R, Cerdas L, Abalos JW. Venoms of coral snakes (Micrurus spp.): report on a multivalent antivenin for the Americas. Bull Pan Am Health Organ. 1978;12:23–7.

    CAS  PubMed  Google Scholar 

  103. Fagnani R, Halpern S, Hagan M. Altered pharmacokinetic and tumour localization properties of Fab′ fragments of a murine monoclonal anti-CEA antibody by covalent modification with low molecular weight dextran. Nucl Med Commun. 1995;16:362–9.

    Article  CAS  PubMed  Google Scholar 

  104. Kobayashi H, Kim I-S, Drumm D, et al. Favorable effects of glycolate conjugation on the biodistribution of humanized antiTac Fab fragment. J Nucl Med. 1999;40:837–45.

    CAS  PubMed  Google Scholar 

  105. Renner C, Hartmann F, Pfreundschuh M. The future of monoclonal antibody engineering. Ann Hematol. 2001;80 Suppl 3:B127–9.

    CAS  PubMed  Google Scholar 

  106. Buntain WL. Successful venomous snakebite neutralization with massive antivenin infusion in a child. J Trauma. 1983;23:1012–4.

    Article  CAS  PubMed  Google Scholar 

  107. Jacobson HR, Striker GE, Klahr S. The principles and practice of nephrology. Philadelphia: BC Decker; 1991. p. 249–51.

    Google Scholar 

  108. MICROMEDEX. Alternative health consults: pregnancy categories. In: Rumack BH, Rider PK, Gelman CR, editors. Micromedex, Healthcare series integrated index. Englewood: MICROMEDEX; 2002.

    Google Scholar 

  109. Jurkovich GJ, Luterman A, McCullar K, et al. Complications of Crotalidae antivenin therapy. J Trauma. 1988;28:1032–7.

    Article  CAS  PubMed  Google Scholar 

  110. Sutherland SK, Lovering KE. Antivenoms: use and adverse reactions over a 12-month period in Australia and Papua New Guinea. Med J Aust. 1979;2:671–4.

    CAS  PubMed  Google Scholar 

  111. Clark RF, Wethern-Kestner S, Vance MV, et al. Clinical presentation and treatment of black widow spider envenomation: a review of 163 cases. Ann Emerg Med. 1992;21:782–7.

    Article  CAS  PubMed  Google Scholar 

  112. Gerardo CJ, Lavonas EJ, McKinney RE. Ethical considerations in design of a study to evaluate a US Food and Drug Administration-approved indication: antivenom versus placebo for copperhead envenomation. Clin Trials. 2014;11(5):560–4. doi:10.1177/1740774514543538. Epub 2014 Jul 23.

    Article  PubMed  Google Scholar 

  113. Kitchens CS, Mierop LHS. Envenomation by the eastern coral snake (Micrurus fulvius fulvius). JAMA. 1987;258:1615–8.

    Article  CAS  PubMed  Google Scholar 

  114. Loprinzi CL, Hennessee J, Leonard T, et al. Snake antivenin administration in a patient allergic to horse serum. South Med J. 1983;76:501–3.

    Article  CAS  PubMed  Google Scholar 

  115. Russell FE. Snake venom poisoning. Great Neck: Scholium; 1980.

    Google Scholar 

  116. Griffen D, Donovan JW. Significant envenomation from a preserved rattlesnake head (in a patient with a history of immediate hypersensitivity to antivenin). Ann Emerg Med. 1986;15:955–8.

    Article  CAS  PubMed  Google Scholar 

  117. Lavonas EJ, Benson BE, Seifert SA. Failure to develop sensitization despite repeated administration of ovine fab snake antivenom: update of a single-patient, multicenter case series. Ann Emerg Med. 2013;61(3):371–2. doi:10.1016/j.annemergmed.2012.08.027.

    Article  PubMed  Google Scholar 

  118. Chippaux JP, Lang J, Edine SA, et al. Clinical safety of a polyvalent F(ab′)2 equine antivenom in 233 African snake envenomations: a field trial in Cameroon. Trans R Soc Trop Med Hyg. 1998;92:657–62.

    Article  CAS  PubMed  Google Scholar 

  119. Davidson TE. Intravenous rattlesnake envenomation. West J Med. 1988;148:45–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Nielsen H, Sorensen H, Faber V, Svehag S-E. Circulating immune complexes, complement activation kinetics and serum sickness following treatment with heterologous anti-snake venom globulin. Scand J Immunol. 1978;7:25–33.

    Article  CAS  PubMed  Google Scholar 

  121. Schaeffer TH, Khatri V, Reifler LM, Lavonas EJ. Incidence of immediate hypersensitivity reaction and serum sickness following administration of Crotalidae polyvalent immune Fab antivenom: a meta-analysis. Acad Emerg Med. 2012;19(2):121–31. doi:10.1111/j.1553-2712.2011.01276.x.

    Article  PubMed  Google Scholar 

  122. Boyer LV, Seifert SA, Cain JS. Recurrence phenomena after immunoglobulin therapy for snake envenomations: part 1. Pharmacokinetics and pharmacodynamics of immunoglobulin antivenoms and related antibodies. Ann Emerg Med. 2001;37:196–201.

    Article  CAS  PubMed  Google Scholar 

  123. Boyer LV, Seifert SA, Clark RF, et al. Recurrent and persistent coagulopathy following pit viper envenomation. Arch Intern Med. 1999;159:706–10.

    Article  CAS  PubMed  Google Scholar 

  124. Burch JM, Agarwal R, Mattox KL, et al. The treatment of crotalid envenomation without antivenin. J Trauma. 1988;28:35–43.

    Article  CAS  PubMed  Google Scholar 

  125. Seifert SA, Kirschner IR, Martin N. Recurrent, persistent, or late, new-onset hematologic abnormalities in Crotaline snakebite. Clin Toxicol (Phila). 2011;49(4):324–9. doi:10.3109/15563650.2011.566883.

    Article  CAS  Google Scholar 

  126. Malasit P, Warrell DA, Chanthavanich P, et al. Prediction, prevention and mechanism of early (anaphylactic) antivenom reactions in victims of snakebites. BMJ. 1986;292:17–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hasiba U, Rosenbach LM, Rockwell D, Lewis J. DIC-like syndrome after envenomation by the snake Crotalus horridus horridus. N Engl J Med. 1975;292:505–7.

    Article  CAS  PubMed  Google Scholar 

  128. Otten EJ, McKimm D. Venomous snakebite in a patient allergic to horse serum. Ann Emerg Med. 1983;12:624–7.

    Article  CAS  PubMed  Google Scholar 

  129. Bush SP, Seifert SA, Oakes J, Smith SD, Phan TH, Pearl SR, Reibling ET. Continuous IV Crotalidae Polyvalent Immune Fab (Ovine) (FabAV) for selected North American rattlesnake bite patients. Toxicon. 2013;69:29–37. doi:10.1016/j.toxicon.2013.02.008. Epub 2013 Mar 6.

    Article  CAS  PubMed  Google Scholar 

  130. FDA. Idarucizumab Highlights of prescribing information. Available http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/761025lbl.pdf. Accessed 16 Jan 2016.

  131. Boyer LV, Seifert SA, Cain JS. Recurrence phenomena after immunoglobulin therapy for snake envenomations: part 2. Guidelines for clinical management with crotaline Fab antivenom. Ann Emerg Med. 2001;37:199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Seifert .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case–control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Seifert, S., Warrick, B. (2016). Immunotoxicology. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_176-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_176-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Immunotherapy
    Published:
    24 March 2017

    DOI: https://doi.org/10.1007/978-3-319-20790-2_176-2

  2. Original

    Immunotoxicology
    Published:
    21 March 2016

    DOI: https://doi.org/10.1007/978-3-319-20790-2_176-1