Advertisement

Biology of Aging

  • Daniel Parker
  • Mitchell Heflin
Living reference work entry

Abstract

Principles distilled from geroscience, the scientific study of aging, can facilitate surgical decision making by identifying appropriate surgical candidates, anticipating surgical complications, and predicting functional outcomes. Theories of aging can be divided into program theories that emphasize genetically -driven limits on lifespan and stochastic theories that focus on the accumulation of “wear and tear” with age. These changes lead to distinct patterns of dysfunction in intracellular processes and intercellular communication that culminate in organ system-specific alterations, which are reviewed here. The inter-related concepts of frailty and resilience synthesize these diverse changes into a unified conceptual framework that can be used to support surgical decision making. Frailty, which is defined as increased vulnerability to stress, is a risk factor for surgical complications and poor outcomes. Conversely, resilience is the ability to resist functional decline following health stressors. The assessment of frailty and resilience can be integrated into pre-surgical evaluation to gauge risk, support shared decision-making, and improve patient outcomes.

References

  1. 1.
    Kennedy BK et al (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lisenkova AA et al (2017) Complete mitochondrial genome and evolutionary analysis of Turritopsis dohrnii, the ‘immortal’ jellyfish with a reversible life-cycle. Mol Phylogenet Evol 107:232–238CrossRefPubMedGoogle Scholar
  3. 3.
    Kim NW et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015CrossRefPubMedGoogle Scholar
  4. 4.
    MacNeil D, Bensoussan H, Autexier C (2016) Telomerase regulation from beginning to the end. Genes 7:64CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Hjelmborg vB J et al (2006) Genetic influence on human lifespan and longevity. Hum Genet 119:312–321CrossRefGoogle Scholar
  6. 6.
    Beekman M et al (2010) Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity. Proc Natl Acad Sci 107:18046–18049CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Beekman M et al (2013) Genome-wide linkage analysis for human longevity: genetics of healthy aging study. Aging Cell 12:184–193CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Santos-Lozano A et al (2016) The genetics of exceptional longevity: insights from centenarians. Maturitas 90:49–57CrossRefPubMedGoogle Scholar
  9. 9.
    Ravussin E et al (2015) A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. J Gerontol A Biol Sci Med Sci 70:1097–1104CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yang L et al (2016) Long-term calorie restriction enhances cellular quality-control processes in human skeletal muscle. Cell Rep 14:422–428CrossRefPubMedGoogle Scholar
  11. 11.
    Sanchez AMJ, Bernardi H, Py G, Candau RB (2014) Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. AJP Regul Integr Comp Physiol 307:R956–R969CrossRefGoogle Scholar
  12. 12.
    Malaquin N, Martinez A, Rodier F (2016) Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype. Exp Gerontol 82:39–49CrossRefPubMedGoogle Scholar
  13. 13.
    Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128:36–44CrossRefPubMedGoogle Scholar
  14. 14.
    Rebo J et al (2016) A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun 7:13363CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fried LP et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156CrossRefPubMedGoogle Scholar
  16. 16.
    Whitson HE et al (2016) Physical resilience in older adults: systematic review and development of an emerging construct. J Gerontol A Biol Sci Med Sci 71:489–495CrossRefPubMedGoogle Scholar
  17. 17.
    Castell M-V et al (2013) Frailty prevalence and slow walking speed in persons age 65 and older: implications for primary care. BMC Fam Pract 14Google Scholar
  18. 18.
    Kim DH, Kim CA, Placide S, Lipsitz LA, Marcantonio ER (2016) Preoperative frailty assessment and outcomes at 6 months or later in older adults undergoing cardiac surgical procedures: a systematic review. Ann Intern Med 165:650CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Revenig LM et al (2015) Report of a simplified frailty score predictive of short-term postoperative morbidity and mortality. J Am Coll Surg 220:904–911.e1CrossRefPubMedGoogle Scholar
  20. 20.
    Sansoni P et al (2008) The immune system in extreme longevity. Exp Gerontol 43:61–65CrossRefPubMedGoogle Scholar
  21. 21.
    Sansoni P et al (1997) T lymphocyte proliferative capability to defined stimuli and costimulatory CD28 pathway is not impaired in healthy centenarians. Mech Ageing Dev 96:127–136CrossRefPubMedGoogle Scholar
  22. 22.
    Fagnoni FF et al (2000) Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 95:2860–2868PubMedGoogle Scholar
  23. 23.
    Fedarko NS (2011) The biology of aging and frailty. Clin Geriatr Med 27:27–37CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Giuliani N et al (2001) Serum interleukin-6, soluble interleukin-6 receptor and soluble gp130 exhibit different patterns of age- and menopause-related changes. Exp Gerontol 36:547–557CrossRefPubMedGoogle Scholar
  25. 25.
    Puzianowska-Kuźnicka M et al (2016) Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun Ageing 13Google Scholar
  26. 26.
    Watt DG, Horgan PG, McMillan DC (2015) Routine clinical markers of the magnitude of the systemic inflammatory response after elective operation: a systematic review. Surgery 157:362–380CrossRefPubMedGoogle Scholar
  27. 27.
    Soysal P et al (2016) Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res Rev 31:1–8CrossRefPubMedGoogle Scholar
  28. 28.
    Sergi G et al (2015) Pre-frailty and risk of cardiovascular disease in elderly men and women. J Am Coll Cardiol 65:976–983CrossRefPubMedGoogle Scholar
  29. 29.
    Zunszain PA, Hepgul N, Pariante CM (2012) In: Cowen PJ, Sharp T, Lau JYF (eds) Behavioral neurobiology of depression and its treatment, vol 14. Springer, Berlin/Heidelberg, pp 135–151CrossRefGoogle Scholar
  30. 30.
    Taaffe DR, Harris TB, Ferrucci L, Rowe J, Seeman TE (2000) Cross-sectional and prospective relationships of interleukin-6 and C-reactive protein with physical performance in elderly persons: MacArthur studies of successful aging. J Gerontol A Biol Sci Med Sci 55:M709–M715CrossRefPubMedGoogle Scholar
  31. 31.
    Reed SA, Senf SM, Cornwell EW, Kandarian SC, Judge AR (2011) Inhibition of IkappaB kinase alpha (IKKα) or IKKbeta (IKKβ) plus forkhead box O (Foxo) abolishes skeletal muscle atrophy. Biochem Biophys Res Commun 405:491–496CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cao Dinh H et al (2016) Effects of physical exercise on markers of cellular immunosenescence: a systematic review. Calcif Tissue Int. doi:10.1007/s00223-016-0212-9Google Scholar
  33. 33.
    Lippi G, Favaloro E, Cervellin G (2014) A review of the value of D-dimer testing for prediction of recurrent venous thromboembolism with increasing age. Semin Thromb Hemost 40:634–639CrossRefPubMedGoogle Scholar
  34. 34.
    Goubareva I et al (2007) Age decreases nitric oxide synthesis and responsiveness in human platelets and increases formation of monocyte–platelet aggregates☆. Cardiovasc Res 75:793–802CrossRefPubMedGoogle Scholar
  35. 35.
    Eren M, Boe A, Klyachko E, Vaughan D (2014) Role of plasminogen activator inhibitor-1 in senescence and aging. Semin Thromb Hemost 40:645–651CrossRefPubMedGoogle Scholar
  36. 36.
    Hou B et al (2004) Tumor necrosis factor activates the human plasminogen activator inhibitor-1 gene through a distal nuclear factor B site. J Biol Chem 279:18127–18136CrossRefPubMedGoogle Scholar
  37. 37.
    Kortlever RM, Bernards R (2006) Senescence, wound healing, and cancer: the PAI-1 connection. Cell Cycle 5:2697–2703CrossRefPubMedGoogle Scholar
  38. 38.
    Liu LL, Leung JM (2000) Predicting adverse postoperative outcomes in patients aged 80 years or older. J Am Geriatr Soc 48:405–412CrossRefPubMedGoogle Scholar
  39. 39.
    Raats JW, van Eijsden WA, Crolla RMPH, Steyerberg EW, van der Laan L (2015) Risk factors and outcomes for postoperative delirium after major surgery in elderly patients. PLoS One 10:e0136071CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Han JH et al (2011) Delirium in older emergency department patients is an independent predictor of hospital length of stay: ED DELIRIUM AND LOS. Acad Emerg Med 18:451–457CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fong TG et al (2009) Delirium accelerates cognitive decline in Alzheimer disease. Neurology 72:1570–1575CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gross AL et al (2012) Delirium and long-term cognitive trajectory among persons with dementia. Arch Intern Med 172:1324–1331CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pandharipande P et al (2006) Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology 104:21–26CrossRefPubMedGoogle Scholar
  44. 44.
    Fong TG et al (2006) Cerebral perfusion changes in older delirious patients using 99mTc HMPAO SPECT. J Gerontol A Biol Sci Med Sci 61:1294–1299CrossRefPubMedGoogle Scholar
  45. 45.
    Maldonado JR (2013) Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry 21:1190–1222CrossRefPubMedGoogle Scholar
  46. 46.
    Kat MG et al (2008) Long-term cognitive outcome of delirium in elderly hip surgery patients. Dement Geriatr Cogn Disord 26:1–8CrossRefPubMedGoogle Scholar
  47. 47.
    Yazdanyar A, Newman AB (2009) The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs. Clin Geriatr Med 25:563–577CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lloyd-Jones D et al (2009) Heart disease and stroke statistics–2009 update: a report from the American Heart Association statistics committee and stroke statistics subcommittee. Circulation 119:480–486CrossRefPubMedGoogle Scholar
  49. 49.
    Abrams AP, Thompson LA (2014) Physiology of aging of older adults. Dent Clin N Am 58:729–738CrossRefPubMedGoogle Scholar
  50. 50.
    Olsen H, Vernersson E, Länne T (2000) Cardiovascular response to acute hypovolemia in relation to age. Implications for orthostasis and hemorrhage. Am J Physiol Heart Circ Physiol 278:H222–H232PubMedGoogle Scholar
  51. 51.
    El-Sharkawy AM, Sahota O, Maughan RJ, Lobo DN (2014) The pathophysiology of fluid and electrolyte balance in the older adult surgical patient. Clin Nutr Edinb Scotl 33:6–13CrossRefGoogle Scholar
  52. 52.
    Maesen B, Nijs J, Maessen J, Allessie M, Schotten U (2012) Post-operative atrial fibrillation: a maze of mechanisms. Eur Secur 14:159–174Google Scholar
  53. 53.
    Magnani JW et al (2016) Atrial fibrillation and declining physical performance in older adults: the health, aging, and body composition study. Circ Arrhythm Electrophysiol 9:e003525PubMedPubMedCentralGoogle Scholar
  54. 54.
    Blechman MB, Gelb AM (1999) Aging and gastrointestinal physiology. Clin Geriatr Med 15:429–438PubMedGoogle Scholar
  55. 55.
    Mezey E (2003) Hepatic, Biliary and Pancreatic Disease in Principles of Geriatric Medicine and Gerontology (eds. Hazzard WR, Blass JP, Halter JB, Ouslander JG & Tinetti ME) 601–612 (McGraw-Hill Professional, 2003)Google Scholar
  56. 56.
    Britton E, McLaughlin JT (2013) Ageing and the gut. Proc Nutr Soc 72:173–177CrossRefPubMedGoogle Scholar
  57. 57.
    Cai H, McNeilly AS, Luttrell LM, Martin B (2012) Endocrine function in aging. Int J Endocrinol 2012:872478CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Marik PE, Varon J (2008) Requirement of perioperative stress doses of corticosteroids: a systematic review of the literature. Arch Surg Chic Ill 1960(143):1222–1226CrossRefGoogle Scholar
  59. 59.
    Bremner AP et al (2012) Age-related changes in thyroid function: a longitudinal study of a community-based cohort. J Clin Endocrinol Metab 97:1554–1562CrossRefPubMedGoogle Scholar
  60. 60.
    Schaeffner ES et al (2012) Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med 157:471CrossRefPubMedGoogle Scholar
  61. 61.
    Wiggins J (2003) Changes in Renal Function in Principles of Geriatric Medicine and Gerontology (eds. Hazzard WR, Blass JP, Halter JB, Ouslander JG & Tinetti ME) 543–549 (McGraw-Hill Professional, 2003)Google Scholar
  62. 62.
    Bolignano D, Mattace-Raso F, Sijbrands EJG, Zoccali C (2014) The aging kidney revisited: a systematic review. Ageing Res Rev 14:65–80CrossRefPubMedGoogle Scholar
  63. 63.
    Levey AS et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of MedicineDuke University School of MedicineDurhamUSA

Section editors and affiliations

  • Mark R. Katlic
    • 1
  1. 1.Department of Surgery, Center for Geriatric SurgerySinai Hospital and Northwest HospitalBaltimoreUSA

Personalised recommendations