Role of Quorum Sensing in Fungal Morphogenesis and Pathogenesis

  • Rohit Sharma
  • Kamlesh JangidEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Fungi are simple organisms yet complex in their morphology. They have evolved in several ways to cope with diverse environmental conditions which they encounter. Some produce dormant structures which help them to survive unfavorable conditions, while others, especially pathogens, have adopted dimorphic form to adapt to new conditions. In many pathogenic fungi, the hyphae are responsible for penetration either through natural openings or via invasion of tissue. Once inside the host, morphogenesis, which is many a times under quorum-sensing regulation, is triggered that enables the mycelium to switch to yeast phase that can now spread in the host with higher efficiency as well as evade host immune responses. Although very few fungi are known to regulate both morphogenesis and pathogenesis via quorum sensing (QS), it is believed that quorum-sensing regulation of at least morphogenesis is a universal phenomenon across all fungi. However, a systematic evidence for this is lacking. A wide array of inducer molecules, such as Butyrolactone I, phenylethanol, tyrosol, farnesol, oxylipin, and farnesoic acid among many others, have been identified in fungi till date. In addition to these chemical compounds, a calcium-binding protein (CBP) is also involved in quorum-sensing regulation of morphogenesis and pathogenesis in the genus Histoplasma. Quorum sensing has well-established applications in controlling the spread of diseases as an alternative strategy to the use of antibiotics and overcoming multidrug-resistant strains. While there are numerous potential inhibitors of quorum-sensing inducers, not even a single effective molecule, which is also economically viable, has been commercialized till date. The research in this field therefore demands a more systematic and coordinated effort to investigate quorum sensing and quenching molecules across the diverse taxa within fungi.


Morphogenesis Pathogenesis Quorum sensing Farnesol Oxylipin Butyrolactone I Quorum-sensing inhibitor 



Czapek dextrose agar


Malt extract agar


Million years ago


Potato carrot agar


Potato dextrose agar


Quorum sensing



The authors thank Department of Biotechnology (DBT), Government of India for funding the Microbial Culture Collection (MCC) wide grant letter no. BT/PR10054/NDB/52/94/2007.


  1. 1.
    Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytologist 154:275–304CrossRefGoogle Scholar
  2. 2.
    Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI, WallingfordGoogle Scholar
  3. 3.
    Sexton AC, Howlett BJ (2006) Parallels in fungal pathogenesis on plant and animal hosts. Eukaryotic Cell 5:1941–1949CrossRefGoogle Scholar
  4. 4.
    Andrianopoulos A (2002) Control of morphogenesis in the human fungal pathogen Penicillium marneffei. Int J Med Microbiol 292:331–347CrossRefGoogle Scholar
  5. 5.
    Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199CrossRefGoogle Scholar
  6. 6.
    Hogan HA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5:613–619CrossRefGoogle Scholar
  7. 7.
    Nickerson KW, Atkin AL, Hornby JM (2006) Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol 72:3805–3813CrossRefGoogle Scholar
  8. 8.
    Wolff AM, Appel KF, Petersen JB, Poulsen U, Arnau J (2002) Identification and analysis of genes involved in the control of dimorphism in Mucor circinelloides (syn. racemosus). FEMS Yeast Res 2:203–213Google Scholar
  9. 9.
    Nemecek JC, Wuthrich M, Klein BS (2006) Global control of dimorphism and virulence in fungi. Science 312:583–588CrossRefGoogle Scholar
  10. 10.
    Epstein L, Nicholson RL (2006) Adhesion and adhesives of fungi and oomycetes. In: Smith AM, Callow JA (eds) Biological adhesives. Springer-Verlag, BerlinGoogle Scholar
  11. 11.
    Knogge W (1998) Fungal pathogenicity. Curr Op Plant Biol 1:324–328CrossRefGoogle Scholar
  12. 12.
    Mendgen K, Hahn M, Deising H (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol 34:367–386CrossRefGoogle Scholar
  13. 13.
    Schafer W (1994) Molecular mechanisms of fungal pathogenicity to plants. Annu Rev Phytopathol 32:461–477CrossRefGoogle Scholar
  14. 14.
    Heath MC, Valent B, Howard RJ, Chumley FG (1990) Correlations between cytologically detected plant-fungal interactions and pathogenicity of Magnaporthe grisea toward weeping love grass. Phytopathol 80:1382–1386CrossRefGoogle Scholar
  15. 15.
    Heath MC, Valent B, Howard RJ, Chumley FG (1990) Interactions of two strains of Magnaporthe grisea with rice, goosegrass and weeping lovegrass. Can J Bot 68:1627–1637CrossRefGoogle Scholar
  16. 16.
    Park G, Bruno KS, Staiger CJ, Talbot NJ, Xu J-R (2004) Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus. Mol Microbiol 53:1695–1707CrossRefGoogle Scholar
  17. 17.
    Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39:385–417CrossRefGoogle Scholar
  18. 18.
    Xu JR (2000) MAP kinases in fungal pathogens. Fung Genet Biol 31:137–152CrossRefGoogle Scholar
  19. 19.
    Kronstad JW (1997) Virulence and cAMP in smuts, blasts and blights. Trends Plant Sci 2:193–199CrossRefGoogle Scholar
  20. 20.
    Talbot NJ, Kershaw MJ, Wakley GE, De Vries OMH, Wessels JGH, Hamer JE (1996) MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8:985–999CrossRefGoogle Scholar
  21. 21.
    Xu JR, Urban M, Sweigard JA, Hamer JE (1997) The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Mol Plant-Microbe Interact 10:187–194CrossRefGoogle Scholar
  22. 22.
    Wang L, Lin X (2012) Morphogenesis in fungal pathogenicity: shape, size and surface. PLoS Pathog 8, e1003027. doi: 10.1371/journal.ppat.1003027 CrossRefGoogle Scholar
  23. 23.
    Gauthier GM (2015) Dimorphism in fungal pathogens of mammals, plants, and insects. PLoS Pathog 11, e1004608. doi: 10.1371/journal.ppat.1004608 CrossRefGoogle Scholar
  24. 24.
    Wang C, St. Leger RJ (2007) The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell 6:2808–2816Google Scholar
  25. 25.
    Evans HC, Elliot SL, Hughes DP (2011) Ophiocordyceps unilateralis: a keystone species for unravelling ecosystem functioning and biodiversity of fungi in tropical forests? Commun Integr Biol 4:598–602CrossRefGoogle Scholar
  26. 26.
    Wanchoo A, Lewis MW, Keyhani N (2009) Lectin mapping reveals stage-specific display of surface carbohydrates in the in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana. Microbiol 155:3121–3133CrossRefGoogle Scholar
  27. 27.
    Pendland JC, Boucias DG (1992) Ultrastructural-localization of carbohydrate in cell-walls of the entomogenous hyphomycete Nomuraea rileyi. Can J Microbiol 38:377–386CrossRefGoogle Scholar
  28. 28.
    Pendland JC, Boucias DG (1996) Phagocytosis of lectin-opsonized fungal cells and endocytosis of the ligand by insect Spodoptera exigua granular hemocytes: an ultrastructural and immunocytochemical study. Cell Tissue Res 285:57–67CrossRefGoogle Scholar
  29. 29.
    Hornby JNM, Jacobitz-Kizzir SM, McNeel DJ, Jensen EC, Treves DS, Nickerson KW (2004) Inoculum size effect in dimorphic fungi: extracellular control of yeast–mycelium dimorphism in Ceratocystis ulmi. Appl Environ Microbiol 70:1356–1359CrossRefGoogle Scholar
  30. 30.
    Nadal M, García-Pedrajas MD, Gold SE (2008) Dimorphism in fungal plant pathogens. FEMS Microbiol Lett 284:127–134CrossRefGoogle Scholar
  31. 31.
    Kwon-Chung KJ, Sorrell TC, Dromer F, Fung E, Levitz SM (2000) Cryptococcosis: clinical and biological aspects. Med Mycol 38:205–213CrossRefGoogle Scholar
  32. 32.
    Lee H, Chang YC, Nardone G, Kwon-Chung KJ (2007) TUP1 disruption in Cryptococcus neoformans uncovers a peptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Mol Microbiol 64:591–601CrossRefGoogle Scholar
  33. 33.
    Lee H, Chang YC, Varma A, Kwon-Chung KJ (2009) Regulatory diversity of TUP1 in Cryptococcus neoformans. Eukaryot Cell 8:1901–1908CrossRefGoogle Scholar
  34. 34.
    Albuquerque P, Nicola AM, Nieves E, Paes HC, Williamson PR, Silva-Pereira I, Casadevall A (2013) Quorum sensing-mediated, cell density-dependent regulation of growth and virulence in Cryptococcus neoformans. MBio 5:e00986–13. doi: 10.1128/mBio.00986-13 Google Scholar
  35. 35.
    Palonen EK, Neffling M-R, Raina S, Brandt A, Keshavarz T, Meriluoto J, Soini J (2014) Butyrolactone I quantification from lovastatin producing Aspergillus terreus using tandem mass spectrometry- evidence of signalling functions. Microorganisms 2:111–127CrossRefGoogle Scholar
  36. 36.
    Schimmel TG, Coffman AD, Parsons SJ (1998) Effect of Butyrolactone I on the producing fungus, Aspergillus terreus. Appl Environ Microbiol 64:3707–3712Google Scholar
  37. 37.
    Raina S, de Vizio D, Palonen EK, Odell M, Brandt AM, Soini JT, Keshavarz T (2012) Is quorum sensing involved in lovastatin production in the filamentous fungus Aspergillus terreus? Process Biochem 47:843–852CrossRefGoogle Scholar
  38. 38.
    Brown SH, Zarnowski R, Sharpee WC, Keller NP (2008) Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Appl Environ Microbiol 74:5674–5685CrossRefGoogle Scholar
  39. 39.
    Erb-Downward JR, Huffnagle GB (2006) Role of oxylipins and other lipid mediators in fungal pathogenesis. Future Microbiol 1:219–227CrossRefGoogle Scholar
  40. 40.
    Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host-fungal communication signals. Trends Microbiol 15:109–118CrossRefGoogle Scholar
  41. 41.
    Nobbs AH, Jenkinson HF (2015) Interkingdom networking within the oral microbiome. Microbes Infect 17:484–492CrossRefGoogle Scholar
  42. 42.
    Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2011) Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol 19:241–247CrossRefGoogle Scholar
  43. 43.
    Gow NAR, van de Veerdonk FL, Brown AJP, Netea MG (2012) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10:112–e122Google Scholar
  44. 44.
    Kruppa M (2008) Quorum sensing and Candida albicans. Mycoses 52:1–10CrossRefGoogle Scholar
  45. 45.
    Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992CrossRefGoogle Scholar
  46. 46.
    Oh KB, Miyazawa H, Naito T, Matsuoka H (2001) Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc Natl Acad Sci 98:4664–4668CrossRefGoogle Scholar
  47. 47.
    Albuquerque P, Casadevall A (2012) Quorum sensing in fungi – a review. Med Mycol 50:337–345CrossRefGoogle Scholar
  48. 48.
    Mosel DD, Dumitru R, Hornby JM, Atkin AL, Nickerson KW (2005) Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Appl Environ Microbiol 71:4938–4940CrossRefGoogle Scholar
  49. 49.
    Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL (2002) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68:5459–5463CrossRefGoogle Scholar
  50. 50.
    Martin SW, Douglas LM, Konopka JB (2005) Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth. Eukaryot Cell 4:1191–202CrossRefGoogle Scholar
  51. 51.
    Abe S, Tsunashima R, Iijima R, Yamada T, Maruyama N, Hisajima T, Abe Y, Oshima H, Yamazaki M (2009) Suppression of anti- Candida activity of macrophages by a quorum-sensing molecule, farnesol, through induction of oxidative stress. Microbiol Immunol 53:323–330CrossRefGoogle Scholar
  52. 52.
    Hisajima T, Maruyama N, Tanabe Y, Ishibashi H, Yamada T, Makimura K, Nishiyama Y, Funakoshi K, Oshima H, Abe S (2008) Protective effects of farnesol against oral candidiasis in mice. Microbiol Immunol 52:327–333CrossRefGoogle Scholar
  53. 53.
    Rennemeier C, Frambach T, Hennicke F, Dietl J, Staib P (2009) Microbial quorum-sensing molecules induce acrosome loss and cell death in human spermatozoa. Infect Immun 77:4990–4997CrossRefGoogle Scholar
  54. 54.
    Alem MAS, Oteef MDF, Flowers TH, Douglas LJ (2006) Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot Cell 5:1770–1779CrossRefGoogle Scholar
  55. 55.
    Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci 101:5048–5052CrossRefGoogle Scholar
  56. 56.
    Leonhardt I, Spielberg S, Weber M, Albrecht-Eckardt D, Bläss M, Claus R, Barz D, Scherlach K, Hertweck C, Löffler J, Hünniger K, Kurzai O (2015) The fungal quorum sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity. mBio 6:e00143–15CrossRefGoogle Scholar
  57. 57.
    Moyes DL, Richardson JP, Naglik JR (2015) Candida albicans-epithelial interactions and pathogenicity mechanisms: scratching the surface. Virulence 6:338–346CrossRefGoogle Scholar
  58. 58.
    Netea MG, Joosten LAB, van der Meer JWM, Kullberg BJ, van de Veerdonk FL (2015) Immune defence against Candida fungal infections. Nat Rev Immunol 15:630–642CrossRefGoogle Scholar
  59. 59.
    Kulkarni RK, Nickerson KW (1981) Nutritional control of dimorphism in Ceratocystis ulmi. Exp Mycol 5:148–154CrossRefGoogle Scholar
  60. 60.
    Berrocal A, Navarrete J, Oviedo C, Nickerson KW (2012) Quorum sensing activity in Ophiostoma ulmi: effects of fusel oils and branched chain amino acids on yeast-mycelial dimorphism. J Appl Microbiol 113:126–134CrossRefGoogle Scholar
  61. 61.
    Martins M, Henriques M, Azeredo J, Rocha SM, Coimbra MA, Oliveira R (2007) Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryot Cell 6:2429–2436CrossRefGoogle Scholar
  62. 62.
    Dickinson JR (2008) Filament formation in Saccharomyces cerevisiae – a review. Folia Microbiol 53:3–14CrossRefGoogle Scholar
  63. 63.
    Berrocal A, Oviedo C, Nickerson KW, Navarrete J (2014) Quorum sensing activity and control of yeast-mycelium dimorphism in Ophiostoma floccosum. Biotechnol Lett 36:1503–1513CrossRefGoogle Scholar
  64. 64.
    Naruzawa ES, Bernier L (2014) Control of yeast-mycelium dimorphism in vitro in Dutch elm disease fungi by manipulation of specific external stimuli. Fungal Biol 118:872–884CrossRefGoogle Scholar
  65. 65.
    Gunde-Cimerman N, Ramos J, Plemenitas A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241CrossRefGoogle Scholar
  66. 66.
    Cruz JM, Dominguez JM, Dominguez H, Parajo JC (2000) Dimorphic behaviour of Debaryomyces hansenii grown on barley bran acid hydrolyzates. Biotechnol Lett 22:605–610CrossRefGoogle Scholar
  67. 67.
    Gori K, Mortensen HD, Arneborg N, Jespersen L (2007) Ammonia as a mediator for communication in strains of Debaryomyces hansenii and yeast species. J Dairy Sci 90:5032–5041CrossRefGoogle Scholar
  68. 68.
    Gori K, Knudsen PB, Nielsen KF, Arneborg N, Jespersen L (2011) Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast Debaryomyces hansenii. FEMS Yeast Res 11:643–652CrossRefGoogle Scholar
  69. 69.
    Kugler S, Schurtz Sebghati T, Groppe Eissenberg L, Goldman WE (2000) Phenotypic variation and intracellular parasitism by Histoplasma capsulatum. Proc Natl Acad Sci 97:8794–8798CrossRefGoogle Scholar
  70. 70.
    Pine L (1955) Studies on the growth of Histoplasma capsulatum. II Growth of the yeast phase on agar media J Bacteriol 70:375–381Google Scholar
  71. 71.
    Glass NL, Rasmussen C, Roca MG, Read ND (2004) Hyphal homing, fusion and mycelial interconnectedness. Trends Microbiol 12:135–141CrossRefGoogle Scholar
  72. 72.
    Roca MG, Arlt J, Jeffree CE, Read ND (2005) Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot Cell 4:911–919CrossRefGoogle Scholar
  73. 73.
    Michael AP, Grace EJ, Kotiw M, Barrow RA (2003) Isochromophilone IX, a novel GABA-containing metabolite isolated from a cultured fungus, Penicillium sp. Aust J Chem 56:13–15CrossRefGoogle Scholar
  74. 74.
    Raina S, Odell M, Keshavarz T (2010) Quorum sensing as a method for improving sclerotiorin production in Penicillium sclerotiorum. J Biotechnol 148:91–98CrossRefGoogle Scholar
  75. 75.
    Severin FF, Meer MV, Smirnova EA, Knorre DA, Skulachev VP (2008) Natural causes of programmed death of yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1783:1350–1353CrossRefGoogle Scholar
  76. 76.
    Severin FF, Hyman AA (2002) Pheromone induces programmed cell death in S. cerevisiae. Curr Biol 12:R233–235CrossRefGoogle Scholar
  77. 77.
    Vachova L, Palkova Z (2005) Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J Cell Biol 169:711–717CrossRefGoogle Scholar
  78. 78.
    Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Develop 20:1150–1161CrossRefGoogle Scholar
  79. 79.
    Wongsuk T, Pumeesat P, Luplertlop N (2016) Fungal quorum sensing molecules: role in fungal morphogenesis and pathogenicity. J Basic Microbiol. doi: 10.1002/jobm.201500759 Google Scholar
  80. 80.
    Dixon EF, Hall RA (2015) Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections. Cellular Microbiol 17:1431–1441CrossRefGoogle Scholar
  81. 81.
    Raina S, De Vizio D, Odell M, Clements M, Vanhulle S, Keshavarz T (2009) Microbial quorum sensing: a tool or a target for antimicrobial therapy? Biotechnol Appl Biochem 54:65–84CrossRefGoogle Scholar
  82. 82.
    Roche DM, Byers JT, Smith DS, Glansdorp FG, Spring DR, Welch M (2004) Communications blackout? Do N-acylhomoserine-lactone-degrading enzymes have any role in quorum sensing? Microbiol 150:2023–2028CrossRefGoogle Scholar
  83. 83.
    Sharma R, Jangid K (2015) Fungal quorum sensing inhibitors. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, IndiaGoogle Scholar
  84. 84.
    Abraham WR (2016) Going beyond the control of quorum sensing to combat biofilm infections. Antibiotics 5. doi: 10.3390/antibiotics5010003 Google Scholar
  85. 85.
    Cho SC, Dussault PH, Lisec AD, Jensen EC, Nickerson KW (1999) Metathesis-based synthesis of jasmonate and homojasmonate lactones, candidates for extracellular quorum sensing molecules in Candida albicans. J Chem Soc Perkin Trans 1:193–196CrossRefGoogle Scholar
  86. 86.
    Hazen KC, Cutler JE (1983) Isolation and purification of morphogenic autoregulatory substance produced by Candida albicans. J Biochem 94:777–783Google Scholar
  87. 87.
    Calvo AM, Hinze LL, Gardner HW, Keller NP (1999) Sporogenic effect of polyunsaturated fatty acids on development of Aspergillus spp. Appl Environ Microbial 65:3668–3673Google Scholar
  88. 88.
    Gottwald TR, Wood BW (1984) The effect of fatty acids on growth and sporulation of the pecan scab fungus Cladosporium caryigenum. Mycologia 76:326–331CrossRefGoogle Scholar
  89. 89.
    Klose J, Moniz de Sá MM, Kronstad JW (2004) Lipid-induced filamentous growth in Ustilago maydis. Mol Microbiol 52:823–835CrossRefGoogle Scholar
  90. 90.
    Nukima M, Sassa T, Ikeda M, Takahashi K (1981) Linoleic acid enhances perithecial production in Neurospora crassa. Agric Biol Chem 45:2371–2373Google Scholar
  91. 91.
    Hogan DA, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223CrossRefGoogle Scholar
  92. 92.
    Zhang LH, Dong YH (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53:1563–1571CrossRefGoogle Scholar
  93. 93.
    Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO, Andersen JB, Koch B, Larsen TO, Hentzer M, Eberl L, Hoiby N, Givskov M (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiol 151:1325–1340CrossRefGoogle Scholar
  94. 94.
    Semighini CP, Hornby JM, Dumitru R, Nickerson KW, Harris SD (2006) Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol 59:753–764CrossRefGoogle Scholar
  95. 95.
    Boyce KJ, Andrianopoulus A (2015) Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol Rev 39:797–811CrossRefGoogle Scholar
  96. 96.
    Bölker M (2001) Ustilago maydis e a valuable model system for the study of fungal dimorphism and virulence. Microbiol 147:1395e1401CrossRefGoogle Scholar
  97. 97.
    Vollmeister E, Schipper K, Baumann S, Haag C, Pohlmann T, Stock J, Feldbrügge M (2012) Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol Rev 36:59–77CrossRefGoogle Scholar
  98. 98.
    Lübbehüsen L, Nielsen J, Mcintyre M (2003) Morphology and physiology of the dimorphic fungus Mucor circinelloides (syn. M. racemosus) during anaerobic growth. Mycol Res 107:223–230CrossRefGoogle Scholar
  99. 99.
    Lingappa BT, Lingappa Y (1969) Role of auto-inhibitors on mycelial growth and dimorphism of Glomerella cingulata. J Gen Microbiol 56:35–45CrossRefGoogle Scholar
  100. 100.
    Macko V, Staples RC, Gershon H, Renwick JA (1970) Self inhibitor of bean rust uredospores: methyl 3,4-dimethoxycinnamate. Science 170:539–540CrossRefGoogle Scholar
  101. 101.
    Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, AmsterdamGoogle Scholar
  102. 102.
    Meng S, Torto-Alalibo T, Chibucos MC, Tyler BM, Dean RA (2009) Common processes in pathogenesis by fungal and oomycete plant pathogens, described with Gene Ontology terms. BMC Microbiol 9:S7. doi: 10.1186/1471-2180-9-S1-S7 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Microbial Culture Collection (MCC)National Centre for Cell Science (NCCS)PuneIndia

Personalised recommendations