Advertisement

Metal Nanoparticle–Mesoporous Oxide Nanocomposite Thin Films

  • Paula C. Angelomé
  • M. Cecilia Fuertes
Living reference work entry

Abstract

Metal nanoparticles (NP) and mesoporous oxide thin films (MPF) can be combined to synthesize new nanocomposite materials (NP@MPF), with novel optical, catalytic, and sensing properties derived from the components combination and synergy. In this chapter, the usual synthesis methods together with the characterization techniques used to understand the composite structure will be described. The evolution of included NP and the nanocomposite stability during chemical, physical, or thermal treatments will be discussed. Finally, the most remarkable applications of these NP@MPF materials will be presented, including examples about their potential use in catalysis, photocatalysis, sensors (based on plasmonic and enhancement properties), and optical devices.

Keywords

Surface Enhance Raman Scattering LSPRLocalized Surface Plasmon Resonance Nanocomposite Film Spectroscopic Ellipsometry LSPRLocalized Surface Plasmon Resonance Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Dr. Eduardo Martínez and M. Mercedes Zalduendo for providing the optical images presented in Fig. 2.

This work was supported by CONICET (PIP 00044CO).

References

  1. Abalde-Cela S, Carregal-Romero S, Coelho JP, Guerrero-Martínez A. Recent progress on colloidal metal nanoparticles as signal enhancers in nanosensing. Adv Colloid Interface Sci. 2016;233:255–70.CrossRefGoogle Scholar
  2. Álvarez-Puebla RA, Liz-Marzán LM. SERS-based diagnosis and biodetection. Small. 2010;6:604–10.CrossRefGoogle Scholar
  3. Andersson M, Birkedal H, Franklin NR, Ostomel T, Boettcher S, Palmqvist AEC, Stucky GD. Ag/AgCl-loaded ordered mesoporous anatase for photocatalysis. Chem Mater. 2005;17:1409–15.CrossRefGoogle Scholar
  4. Angelomé PC, Liz-Marzán LM. Monitoring solvent evaporation from thin films by localized surface plasmon resonance shifts. J Phys Chem C. 2010;114:18379–83.CrossRefGoogle Scholar
  5. Angelomé PC, Liz-Marzán LM. Synthesis and applications of mesoporous nanocomposites containing metal nanoparticles. J Sol–gel Sci Technol. 2014;70:180–90.CrossRefGoogle Scholar
  6. Angelomé PC, Andrini L, Fuertes MC, Requejo FG, Soler-Illia GJAA. Large-pore mesoporous titania-silica thin films (Ti1-xSixO2, 0.1 ≤ x ≤ 0.9) with highly interdispersed mixed oxide frameworks. C R Chim. 2010;13:256–69.CrossRefGoogle Scholar
  7. Angelomé PC, Pastoriza-Santos I, Pérez Juste J, Rodríguez-González B, Zelcer A, Soler-Illia GJAA, Liz Marzán LM. Growth and branching of gold nanoparticles through mesoporous silica thin films. Nanoscale. 2012;4:931–9.CrossRefGoogle Scholar
  8. Astruc D, Lu F, Aranzaes JR. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed. 2005;44:7852–72.CrossRefGoogle Scholar
  9. Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater. 2010;9:205–13.CrossRefGoogle Scholar
  10. Baklanov MR, Mogilnikov KP, Polovinkin VG, Dultsev FN. Determination of pore size distribution in thin films by ellipsometric porosimetry. J Vac Sci Technol B: Microelectron Nanometer Struct. 2000;18:1385–91.CrossRefGoogle Scholar
  11. Bannat I, Wessels K, Oekermann T, Rathousky J, Bahnemann D, Wark M. Improving the photocatalytic performance of mesoporous titania films by modification with gold nanostructures. Chem Mater. 2009;21:1645–53.CrossRefGoogle Scholar
  12. Battie Y, Destouches N, Bois L, Chassagneux F, Tishchenko A, Sp P, Boukenter A. Growth mechanisms and kinetics of photoinduced silver nanoparticles in mesostructured hybrid silica films under UV and visible illumination. J Phys Chem C. 2010;114:8679–87.CrossRefGoogle Scholar
  13. Battie Y, Destouches N, Chassagneux F, Jamon D, Bois L, Moncoffre N, Toulhoat N. Optical properties of silver nanoparticles thermally grown in a mesostructured hybrid silica film. Opt Mater Express. 2011;1:1019–33.CrossRefGoogle Scholar
  14. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114:10834–43.CrossRefGoogle Scholar
  15. Besson S, Gacoin T, Ricolleau C, Boilot J-P. Silver nanoparticle growth in 3D-hexagonal mesoporous silica films. Chem Commun. 2003;360–1.Google Scholar
  16. Bohren CF, Huffman DR. Absorption and scattering of light by small particles, Wiley science paperback series. New York: Wiley -Interscience; 1983.Google Scholar
  17. Bois L, Bessueille F, Chassagneux F, Battie Y, Destouches N, Hubert C, Boukenter A, Parola S. Silver nanoparticles growth in a mesoporous silica film templated with the F127 triblock copolymer. Colloids Surf A Physicochem Eng Asp. 2008;325:86–92.CrossRefGoogle Scholar
  18. Bois L, Chassagneux F, Battie Y, Bessueille F, Mollet L, Parola S, Destouches N, Toulhoat N, Moncoffre N. Chemical growth and photochromism of silver nanoparticles into a mesoporous titania template. Langmuir. 2009;26:1199–206.CrossRefGoogle Scholar
  19. Bois L, Chassagneux F, Desroches C, Battie Y, Destouches N, Gilon N, Parola S, Stéphan O. Electroless growth of silver nanoparticles into mesostructured silica block copolymer films. Langmuir. 2010;26:8729–36.CrossRefGoogle Scholar
  20. Boissiere C, Grosso D, Lepoutre S, Nicole L, Bruneau AB, Sanchez C. Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry. Langmuir. 2005;21:12362–71.CrossRefGoogle Scholar
  21. Brinker CJ, Lu Y, Sellinger A, Fan H. Evaporation-induced self-assembly: nanostructures made easy. Adv Mater. 1999;11:579–85.CrossRefGoogle Scholar
  22. Bronstein LM. Nanoparticles made in mesoporous solids. In: Antonietti M, editor. Colloid chemistry I. Berlin/Heidelberg: Springer; 2003. p. 55–89. doi:10.1007/3-540-36408-0_3.CrossRefGoogle Scholar
  23. Calvo A, Fuertes MC, Yameen B, Williams FJ, Azzaroni O, Soler-Illia GJAA. Nanochemistry in confined environments: polyelectrolyte brush-assisted synthesis of gold nanoparticles inside ordered mesoporous thin films. Langmuir. 2010;26:5559–67.CrossRefGoogle Scholar
  24. Carbó-Argibay E, Rodríguez-González B. Controlled growth of colloidal gold nanoparticles: single-crystalline versus multiply-twinned particles. Isr J Chem. 2015;in press. doi: 10.1002/ijch.201500032.Google Scholar
  25. Carretero-Genevrier A, Drisko GL, Grosso D, Boissiere C, Sanchez C. Mesoscopically structured nanocrystalline metal oxide thin films. Nanoscale. 2014;6:14025–43.CrossRefGoogle Scholar
  26. Chassagneux F, Bois L, Simon J-P, Desroches C, Brioude A. Elaboration and characterization of bimetallic gold-silver nanoparticles supported on mesostructured silica films. J Mater Chem. 2011a;21:11947–55.CrossRefGoogle Scholar
  27. Chassagneux F, Chiriac R, Bessueille F, Karabulut M, Bois L, Parola S. Ellipsoporosimetry and thermoporometry analyses of mesoporous titania film containing silver nanoparticles. Microporous Mesoporous Mater. 2011b;139:52–8.CrossRefGoogle Scholar
  28. Chassagneux F, Simon J-P, Bois L, Desroches C, Brioude A. Reorganization induced by silver salt reduction inside a mesostructured block copolymer silica film. J Phys Chem C. 2011c;115:25201–8.CrossRefGoogle Scholar
  29. Cortial G, Siutkowski M, Goettmann F, Moores A, Boissière C, Grosso D, Le Floch P, Sanchez C. Metallic nanoparticles hosted in mesoporous oxide thin films for catalytic applications. Small. 2006;2:1042–5.CrossRefGoogle Scholar
  30. Crespo-Monteiro N, Destouches N, Bois L, Chassagneux F, Reynaud S, Fournel T. Reversible and irreversible laser microinscription on silver-containing mesoporous titania films. Adv Mater. 2010;22:3166–70.CrossRefGoogle Scholar
  31. Crespo-Monteiro N, Destouches N, Nadar L, Reynaud S, Vocanson F, Michalon JY. Irradiance influence on the multicolor photochromism of mesoporous TiO2 films loaded with silver nanoparticles. Appl Phys Lett. 2011;99:173106.CrossRefGoogle Scholar
  32. Cui F, Hua Z, Cui X, Guo L, Wei C, Bu W, Shi J. Au nanoparticles incorporated mesoporous silica thin films with a high Au content: preparation and third-order optical non-linearity. Dalton Trans. 2009a;2679–82.Google Scholar
  33. Cui F, Hua Z, Wei C, Li Z, Gao Z, Shi J. Highly dispersed Au nanoparticles incorporated mesoporous TiO2 thin ultrahigh Au content. J Mater Chem. 2009b;19:7632–7.Google Scholar
  34. Cui F, Feng C, Xie R, Hua Z, Cui X, Zhou J, Wei C, Ohtsuka H, Sakka Y, Shi J. Significant third-order optical nonlinearity enhancement of gold nanoparticle incorporated mesoporous silica thin films by magnetic field thermal treatment. J Mater Chem. 2010;20:8399–404.CrossRefGoogle Scholar
  35. Dag O, Samarskaya O, Coombs N, Ozin GA. The synthesis of mesostructured silica films and monoliths functionalised by noble metal nanoparticles. J Mater Chem. 2003;13:328–34.CrossRefGoogle Scholar
  36. Destouches N, Battie Y, Crespo-Monteiro N, Chassagneux F, Bois L, Bakhti S, Vocanson F, Toulhoat N, Moncoffre N, Epicier T. Photo-directed organization of silver nanoparticles in mesostructured silica and titania films. J Nanopart Res C7 – 1422. 2013;15:1–10.Google Scholar
  37. Destouches N, Crespo-Monteiro N, Vitrant G, Lefkir Y, Reynaud S, Epicier T, Liu Y, Vocanson F, Pigeon F. Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation. J Mater Chem C. 2014;2:6256–63.CrossRefGoogle Scholar
  38. Ding L, Li W, Sun Q, He Y, Su B. Gold nanoparticles confined in vertically aligned silica nanochannels and their electrocatalytic activity toward ascorbic acid. Chem A Eur J. 2014;20:12777–80.CrossRefGoogle Scholar
  39. Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev. 2012;41:2885–911.CrossRefGoogle Scholar
  40. Fang J-Y, Qin S-Q, Zhang X-A, Nie Y-M, Wang F. Linear and nonlinear optical properties of gold nanocrystal-incorporated mesoporous silica thin films. RSC Adv. 2012;2:11777–85.CrossRefGoogle Scholar
  41. Fuertes MC, Marchena M, Marchi MC, Wolosiuk A, Soler-Illia GJAA. Controlled deposition of silver nanoparticles in mesoporous single- or multilayer thin films: from tuned pore filling to selective spatial location of nanometric objects. Small. 2009;5:272–80.CrossRefGoogle Scholar
  42. Fukuoka A, Araki H, Sakamoto Y, Sugimoto N, Tsukada H, Kumai Y, Akimoto Y, Ichikawa M. Template synthesis of nanoparticle arrays of gold and platinum in mesoporous silica films. Nano Lett. 2002;2:793–5.CrossRefGoogle Scholar
  43. Fukuoka A, Araki H, Kimura J-I, Sakamoto Y, Higuchi T, Sugimoto N, Inagaki S, Ichikawa M. Template synthesis of nanoparticle arrays of gold, platinum and palladium in mesoporous silica films and powders. J Mater Chem. 2004;14:752–6.CrossRefGoogle Scholar
  44. Gibaud A, Dourdain S, Vignaud G. Analysis of mesoporous thin films by X-ray reflectivity, optical reflectivity and grazing incidence small angle X-ray scattering. Appl Surf Sci. 2006;253:3–11.CrossRefGoogle Scholar
  45. Goettmann F, Moores A, Boissière C, Le Floch P, Sanchez C. A selective chemical sensor based on plasmonic response of phosphinine-stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers. Small. 2005;1:636–9.CrossRefGoogle Scholar
  46. Grzelczak M, Pérez Juste J, Mulvaney P, Liz Marzán LM. Shape control in gold nanoparticle synthesis. Chem Soc Rev. 2008;37:1783–91.CrossRefGoogle Scholar
  47. Gu D, Schuth F. Synthesis of non-siliceous mesoporous oxides. Chem Soc Rev. 2014;43:313–44.CrossRefGoogle Scholar
  48. Gu J, Shi J, Xiong L, Chen H, Ruan M. A new strategy to incorporate highly dispersed nanoparticles into the pore channels of mesoporous silica thin films. Microporous Mesoporous Mater. 2004;74:199–204.CrossRefGoogle Scholar
  49. Gu JL, Shi JL, You GJ, Xiong LM, Qian SX, Hua ZL, Chen HR. Incorporation of highly dispersed gold nanoparticles into the pore channel of mesoporous silica thin films and their ultrafast nonlinear optical response. Adv Mater. 2005;17:557–60.CrossRefGoogle Scholar
  50. Hamanaka Y, Fukuta K, Nakamura A, Liz-Marzán LM, Mulvaney P. Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations. Appl Phys Lett. 2004;84:4938–40.CrossRefGoogle Scholar
  51. Horiuchi Y, Shimada M, Kamegawa T, Mori K, Yamashita H. Size-controlled synthesis of silver nanoparticles on Ti-containing mesoporous silica thin film and photoluminescence enhancement of rhodamine 6G dyes by surface plasmon resonance. J Mater Chem. 2009;19:6745–9.CrossRefGoogle Scholar
  52. Howes PD, Rana S, Stevens MM. Plasmonic nanomaterials for biodiagnostics. Chem Soc Rev. 2014;43:3835–53.CrossRefGoogle Scholar
  53. Hu J, Wang L, Cai W, Li Y, Zeng H, Zhao L, Liu P. Smart and reversible surface Plasmon resonance responses to various atmospheres for silver nanoparticles loaded in mesoporous SiO2. J Phys Chem C. 2009;113:19039–45.CrossRefGoogle Scholar
  54. Innocenzi P, Malfatti L. Mesoporous thin films: properties and applications. Chem Soc Rev. 2013;42:4198–216.CrossRefGoogle Scholar
  55. Jimenez de Aberasturi D, Serrano-Montes AB, Liz-Marzán LM. Modern applications of plasmonic nanoparticles: from energy to health. Adv Opt Mater. 2015;3:602–17.CrossRefGoogle Scholar
  56. Kanno Y, Suzuki T, Yamauchi Y, Kuroda K. Preparation of Au nanowire films by electrodeposition using mesoporous silica films as a template: vital effect of vertically oriented mesopores on a substrate. J Phys Chem C. 2012;116:24672–80.CrossRefGoogle Scholar
  57. Kobayashi Y, Correa-Duarte MA, Liz-Marzán LM. Sol–gel processing of silica-coated gold nanoparticles. Langmuir. 2001;17:6375–9.CrossRefGoogle Scholar
  58. Kreibig U, Vollmer M. Optical properties of metal clusters, Springer series in materials science. Berlin: Springer; 1995.CrossRefGoogle Scholar
  59. Kresge CT, Roth WJ. The discovery of mesoporous molecular sieves from the twenty year perspective. Chem Soc Rev. 2013;42:3663–70.CrossRefGoogle Scholar
  60. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.CrossRefGoogle Scholar
  61. Krylova GV, Gnatyuk YI, Smirnova NP, Eremenko AM, Gun’ko VM. Ag nanoparticles deposited onto silica, titania, and zirconia mesoporous films synthesized by sol–gel template method. J Sol–gel Sci Technol. 2009;50:216–28.CrossRefGoogle Scholar
  62. Kumai Y, Tsukada H, Akimoto Y, Sugimoto N, Seno Y, Fukuoka A, Ichikawa M, Inagaki S. Highly ordered platinum nanodot arrays with cubic symmetry in mesoporous thin films. Adv Mater. 2006;18:760–2.CrossRefGoogle Scholar
  63. Lebeau B, Galarneau A, Linden M. Introduction for 20 years of research on ordered mesoporous materials. Chem Soc Rev. 2013;42:3661–2.CrossRefGoogle Scholar
  64. Leroy CM, Cardinal T, Jubera V, Aymonier C, Treguer-Delapierre M, Boissière C, Grosso D, Sanchez C, Viana B, Pellé F. Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn. Microporous Mesoporous Mater. 2013;170:123–30.CrossRefGoogle Scholar
  65. Li N, Zhao P, Astruc D. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed. 2014a;53:1756–89.CrossRefGoogle Scholar
  66. Li W, Wu Z, Wang J, Elzatahry AA, Zhao D. A perspective on mesoporous TiO2 materials. Chem Mater. 2014b;26:287–98.CrossRefGoogle Scholar
  67. Liao HB, Xiao RF, Fu JS, Yu P, Wong GKL, Sheng P. Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold. Appl Phys Lett. 1997;70:1–3.CrossRefGoogle Scholar
  68. Liu Z, Destouches N, Vitrant G, Lefkir Y, Epicier T, Vocanson F, Bakhti S, Fang Y, Bandyopadhyay B, Ahmed M. Understanding the growth mechanisms of Ag nanoparticles controlled by Plasmon-induced charge transfers in Ag-TiO2 films. J Phys Chem C. 2015;119:9496–505.CrossRefGoogle Scholar
  69. Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 2006;22:32–41.CrossRefGoogle Scholar
  70. López-Puente V, Abalde-Cela S, Angelomé PC, Alvarez-Puebla RA, Liz-Marzán LM. Plasmonic mesoporous composites as molecular sieves for SERS detection. J Phys Chem Lett. 2013;4:2715–20.CrossRefGoogle Scholar
  71. López-Puente V, Angelomé PC, Soler-Illia GJAA, Liz-Marzán LM. Selective SERS sensing modulated by functionalized mesoporous films. ACS Appl Mater Interfaces. 2015;7:25633–40.CrossRefGoogle Scholar
  72. Losurdo M, Bergmair M, Bruno G, Cattelan D, Cobet C, Martino A, Fleischer K, Dohcevic-Mitrovic Z, Esser N, Galliet M, Gajic R, Hemzal D, Hingerl K, Humlicek J, Ossikovski R, Popovic ZV, Saxl O. Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives. J Nanopart Res. 2009;11:1521–54.CrossRefGoogle Scholar
  73. Lu Q, Cui F, Dong C, Hua Z, Shi J. Gold nanoparticles incorporated mesoporous silica thin films of varied gold contents and their well-tuned third-order optical nonlinearities. Opt Mater. 2011;33:1266–71.CrossRefGoogle Scholar
  74. Malfatti L, Marongiu D, Costacurta S, Falcaro P, Amenitsch H, Marmiroli B, Grenci G, Casula MF, Innocenzi P. Writing self-assembled mesostructured films with in situ formation of gold nanoparticles. Chem Mater. 2010;22:2132–7.CrossRefGoogle Scholar
  75. Malfatti L, Falcaro P, Marmiroli B, Amenitsch H, Piccinini M, Falqui A, Innocenzi P. Nanocomposite mesoporous ordered films for lab-on-chip intrinsic surface enhanced Raman scattering detection. Nanoscale. 2011;3:3760–6.CrossRefGoogle Scholar
  76. Martínez ED, Bellino MG, Soler-Illia GJAA. Patterned production of silver-mesoporous titania nanocomposite thin films using lithography-assisted metal reduction. ACS Appl Mater Interfaces. 2009;1:746–9.CrossRefGoogle Scholar
  77. Martinez ED, Granja L, Bellino MG, Soler-Illia GJAA. Electrical conductivity in patterned silver-mesoporous titania nanocomposite thin films: towards robust 3D nano-electrodes. Phys Chem Chem Phys. 2010;12:14445–8.CrossRefGoogle Scholar
  78. Martínez ED, Boissière C, Grosso D, Sanchez C, Troiani H, Soler-Illia GJAA. Confinement-induced growth of Au nanoparticles entrapped in mesoporous TiO2 thin films evidenced by in situ thermo-ellipsometry. J Phys Chem C. 2014;118:13137–51.CrossRefGoogle Scholar
  79. May RA, Patel MN, Johnston KP, Stevenson KJ. Flow-based multiadsorbate ellipsometric porosimetry for the characterization of mesoporous Pt-TiO2 and Au-TiO2 nanocomposites. Langmuir. 2009;25:4498–509.CrossRefGoogle Scholar
  80. Mitra A, Jana D, De G. A facile synthesis of cubic Im(−3)m alumina films on glass with potential catalytic activity. Chem Commun. 2012;48:3333–5.CrossRefGoogle Scholar
  81. Moores A, Goettmann F. The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem. 2006;30:1121–32.CrossRefGoogle Scholar
  82. Muraza O, Rebrov EV, Berenguer-Murcia A, de Croon MHJM, Schouten JC. Selectivity control in hydrogenation reactions by nanoconfinement of polymetallic nanoparticles in mesoporous thin films. Appl Catal A Gen. 2009;368:87–96.CrossRefGoogle Scholar
  83. Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, García de Abajo FJ. Modelling the optical response of gold nanoparticles. Chem Soc Rev. 2008;37:1792–805.CrossRefGoogle Scholar
  84. Nadar L, Sayah R, Vocanson F, Crespo-Monteiro N, Boukenter A, Sao Joao S, Destouches N. Influence of reduction processes on the colour and photochromism of amorphous mesoporous TiO2 thin films loaded with a silver salt. Photochem Photobiol Sci. 2011;10:1810–6.CrossRefGoogle Scholar
  85. Nadar L, Destouches N, Crespo-Monteiro N, Sayah R, Vocanson F, Reynaud S, Lefkir Y, Capoen B. Multicolor photochromism of silver-containing mesoporous films of amorphous or anatase TiO2. J Nanopart Res. 2013;15:1–10.CrossRefGoogle Scholar
  86. Oates TWH, Wormeester H, Arwin H. Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry. Prog Surf Sci. 2011;86:328–76.CrossRefGoogle Scholar
  87. Pastoriza-Santos I, Liz-Marzán LM. Colloidal silver nanoplates. State of the art and future challenges. J Mater Chem. 2008;18:1724–37.CrossRefGoogle Scholar
  88. Patel MN, Williams RD, May RA, Uchida H, Stevenson KJ, Johnston KP. Electrophoretic deposition of Au nanocrystals inside perpendicular mesochannels of TiO2. Chem Mater. 2008;20:6029–40.CrossRefGoogle Scholar
  89. Pedrueza E, Valdés JL, Chirvony V, Abargues R, Hernández-Saz J, Herrera M, Molina SI, Martínez-Pastor JP. Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: optical characterization and comparison with Maxwell–Garnett modeling. Adv Funct Mater. 2011;21:3502–7.CrossRefGoogle Scholar
  90. Pérez MD, Otal E, Bilmes SA, Soler-Illia GJAA, Crepaldi EL, Grosso D, Sanchez C. Growth of gold nanoparticle arrays in TiO2 mesoporous matrixes. Langmuir. 2004;20:6879–86.CrossRefGoogle Scholar
  91. Pérez-Juste J, Correa-Duarte MA, Liz-Marzán LM. Silica gels with tailored, gold nanorod-driven optical functionalities. Appl Surf Sci. 2004;226:137–43.CrossRefGoogle Scholar
  92. Petkov N, Platschek B, Morris MA, Holmes JD, Bein T. Oriented growth of metal and semiconductor nanostructures within aligned mesoporous channels. Chem Mater. 2007;19:1376–81.CrossRefGoogle Scholar
  93. Plyuto Y, Berquier J-M, Jacquiod C, Ricolleau C. Ag nanoparticles synthesised in template-structured mesoporous silica films on a glass substrate. Chem Commun. 1999;1653–4.Google Scholar
  94. Qi H, Shopsowitz KE, Hamad WY, MacLachlan MJ. Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films. J Am Chem Soc. 2011;133:3728–31.CrossRefGoogle Scholar
  95. Rafti M, Brunsen A, Fuertes MC, Azzaroni O, Soler-Illia GJAA. Heterogeneous catalytic activity of platinum nanoparticles hosted in mesoporous silica thin films modified with polyelectrolyte brushes. ACS Appl Mater Interfaces. 2013;5:8833–40.CrossRefGoogle Scholar
  96. Roldán MV, de Oña P, Castro Y, Durán A, Faccendini P, Lagier C, Grau R, Pellegri NS. Photocatalytic and biocidal activities of novel coating systems of mesoporous and dense TiO2-anatase containing silver nanoparticles. Mater Sci Eng C. 2014;43:630–40.CrossRefGoogle Scholar
  97. Roldán MV, Castro Y, Pellegri N, Durán A. Enhanced photocatalytic activity of mesoporous SiO2/TiO2 sol–gel coatings doped with Ag nanoparticles. J Sol–gel Sci Technol. 2015;76:180–94.CrossRefGoogle Scholar
  98. Sánchez C, Boissière C, Grosso D, Laberty C, Nicole L. Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mater. 2008;20:682–737.CrossRefGoogle Scholar
  99. Sánchez VM, Martínez ED, Martínez Ricci ML, Troiani H, Soler-Illia GJAA. Optical properties of Au nanoparticles included in mesoporous TiO2 thin films: a dual experimental and modeling study. J Phys Chem C. 2013;117:7246–59.CrossRefGoogle Scholar
  100. Sayah R, Nadar L, Vocanson F, Battie Y, Reynaud S, Vera R, Boukenter A, Destouches N. Growth by heat treatment of silver nanorods inside mesostructured silica thin films: Synthesis, colours of thin films, study of some experimental parameters and characterization. Microporous Mesoporous Mater. 2011;139:45–51.CrossRefGoogle Scholar
  101. Schätz A, Reiser O, Stark WJ. Nanoparticles as semi-heterogeneous catalyst supports. Chem A Eur J. 2010;16:8950–67.CrossRefGoogle Scholar
  102. Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed. 2014;53:4756–95.CrossRefGoogle Scholar
  103. Selvan ST, Hayakawa T, Nogami M, Kobayashi Y, Liz-Marzán LM, Hamanaka Y, Nakamura A. Sol–gel derived gold nanoclusters in silica glass possessing large optical nonlinearities. J Phys Chem B. 2002;106:10157–62.CrossRefGoogle Scholar
  104. Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM. LSPR-based nanobiosensors. Nano Today. 2009;4:244–51.CrossRefGoogle Scholar
  105. Soler-Illia GJAA, Innocenzi P. Mesoporous hybrid thin films: the physics and chemistry beneath. Chem A Eur J. 2006;12:4478–94.CrossRefGoogle Scholar
  106. Soler-Illia GJAA, Angelomé PC, Fuertes MC, Grosso D, Boissiere C. Critical aspects in the production of periodically ordered mesoporous titania thin films. Nanoscale. 2012;4:2549–66.CrossRefGoogle Scholar
  107. Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev. 2008;37:1896–908.CrossRefGoogle Scholar
  108. Sun J, Bao X. Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts. Chem A Eur J. 2008;14:7478–88.CrossRefGoogle Scholar
  109. Thomas JM, Terasaki O, Gai PL, Zhou W, Gonzalez-Calbet J. Structural elucidation of microporous and mesoporous catalysts and molecular sieves by high-resolution electron microscopy. Acc Chem Res. 2001;34:583–94.CrossRefGoogle Scholar
  110. Tompkins HG, McGahan WA. Spectroscopic ellipsometry and reflectometry. A user’s guide. New York: Wiley Interscience; 1999.Google Scholar
  111. van der Lee A. Grazing incidence specular reflectivity: theory, experiment, and applications. Solid State Sci. 2000;2:257–78.CrossRefGoogle Scholar
  112. Violi IL, Zelcer A, Bruno MM, Luca V, Soler-Illia GJAA. Gold nanoparticles supported in zirconia-ceria mesoporous thin films: a highly active reusable heterogeneous nanocatalyst. ACS Appl Mater Interfaces. 2015;7:1114–21.CrossRefGoogle Scholar
  113. White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ. Supported metal nanoparticles on porous materials. Methods and applications. Chem Soc Rev. 2009;38:481–94.CrossRefGoogle Scholar
  114. Wolosiuk A, Tognalli NG, Martínez ED, Granada M, Fuertes MC, Troiani H, Bilmes SA, Fainstein A, Soler-Illia GJAA. Silver nanoparticle-mesoporous oxide nanocomposite thin films: a platform for spatially homogeneous SERS-active substrates with enhanced stability. ACS Appl Mater Interfaces. 2014;6:5263–72.CrossRefGoogle Scholar
  115. Wu C-W, Yamauchi Y, Ohsuna T, Kuroda K. Structural study of highly ordered mesoporous silica thin films and replicated Pt nanowires by high-resolution scanning electron microscopy (HRSEM). J Mater Chem. 2006;16:3091–8.CrossRefGoogle Scholar
  116. Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed. 2009;48:60–103.CrossRefGoogle Scholar
  117. Xia X, Zeng J, Zhang Q, Moran CH, Xia Y. Recent developments in shape-controlled synthesis of silver nanocrystals. J Phys Chem C. 2012;116:21647–56.CrossRefGoogle Scholar
  118. Yacou C, Fontaine M-L, Ayral A, Lacroix-Desmazes P, Albouy P-A, Julbe A. One pot synthesis of hierarchical porous silica membrane material with dispersed Pt nanoparticles using a microwave-assisted sol–gel route. J Mater Chem. 2008;18:4274–9.CrossRefGoogle Scholar
  119. Yang Z, Ni W, Kou X, Zhang S, Sun Z, Sun L-D, Wang J, Yan C-H. Incorporation of gold nanorods and their enhancement of fluorescence in mesostructured silica thin films. J Phys Chem C. 2008;112:18895–903.CrossRefGoogle Scholar
  120. Zhang Y, Yuwono AH, Li J, Wang J. Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration. Microporous Mesoporous Mater. 2008;110:242–9.CrossRefGoogle Scholar
  121. Zhao J, Sallard S, Smarsly BM, Gross S, Bertino M, Boissiere C, Chen H, Shi J. Photocatalytic performances of mesoporous TiO2 films doped with gold clusters. J Mater Chem. 2010;20:2831–9.CrossRefGoogle Scholar
  122. Zhao P, Li N, Astruc D. State of the art in gold nanoparticle synthesis. Coord Chem Rev. 2013;257:638–65.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Gerencia Química, Centro Atómico ConstituyentesComisión Nacional de Energía Atómica, CONICETSan Martín, Buenos AiresArgentina

Personalised recommendations