Advertisement

Modified Pechini Synthesis of Oxide Powders and Thin Films

  • Tor Olav Løveng Sunde
  • Tor Grande
  • Mari-Ann Einarsrud
Living reference work entry

Abstract

The modified Pechini method has become one of the most popular synthesis methods for complex oxide materials due to its simplicity and versatility. The method can be applied to synthesize nanocrystalline powders, bulk materials, as well as oxide thin films. Here, we present a comprehensive review of the method with focus on the chemistry through the three stages of the process: preparation of stable aqueous solution, polyesterification to form a solid polymeric resin, and finally decomposition/combustion of the resin to form an amorphous oxide followed by crystallization of the desired oxide phase. The review include several examples of important technical oxide materials where the method has been successfully been applied to prepare oxide powders and bulk or thin films.

Keywords

Calcination Temperature Basic Cation Lanthanum Strontium Manganite Polymerization Agent Amino Carboxylic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbas HA, Youssef AM, Hammad FF, Hassan AMA, Hanafi ZM. Electrical properties of nano-sized indium tin oxide (ITO) doped with CuO, Cr2O3 and ZrO2. J Nanopart Res. 2014;16:2518.Google Scholar
  2. Arima M, Kakihana M, Nakamura Y, Yashima M, Yoshimura M. Polymerized complex route to barium titanate powders using barium-titanium mixed-metal citric acid complex. J Am Ceram Soc. 1996;79:2847–56.CrossRefGoogle Scholar
  3. Baumann FS, Fleig J, Habermeier HU, Maier J. Impedance spectroscopic study on well-defined (La, Sr)(Co, Fe)O3-δ model electrodes. Solid State Ion. 2006;177:1071–81.CrossRefGoogle Scholar
  4. Bednorz JG, Müller KA. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z Phys B: Condens Matter. 1986;64:189–93.CrossRefGoogle Scholar
  5. Bernardi MIB, et al. Influence of the concentration of Sb2O3 and the viscosity of the precursor solution on the electrical and optical properties of SnO2 thin films produced by the Pechini method. Thin Solid Films. 2002;405:228–33.CrossRefGoogle Scholar
  6. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47:2930–46.CrossRefGoogle Scholar
  7. Brylewski T, Przybylski K. Physicochemical properties of high-TC (Bi, Pb)-Sr-Ca-Cu-O and Y-Ba-Cu-O superconductors prepared by sol–gel technique. Appl Supercond. 1993;1:737–44.CrossRefGoogle Scholar
  8. Bubendorfer AJ, Kemmitt T, Campbell LJ, Long NJ. Formation of epitaxial YBCO thin films by ex-situ processing of a polymerized complex. IEEE Trans Appl Supercond. 2003;13:2739–42.CrossRefGoogle Scholar
  9. Cava RJ, et al. Bulk superconductivity at 91 K in single-phase oxygen-deficient perovskite Ba2YCu3O9-δ. Phys Rev Lett. 1987;58:1676–9.CrossRefGoogle Scholar
  10. Chae KW, Park TR, Cheon CI, Cho NI, Kim JS. Transparent and highly luminescent Eu-oxide thin film phosphors on sapphire substrates. Electron Mater Lett. 2013;9:59–63.CrossRefGoogle Scholar
  11. Chiang C, Shei CY, Wu SF, Huang YT. Preparation of high-purity Tl-based “1223” superconductor phase by modified Pechini process in water solution. Appl Phys Lett. 1991;58:2435–7.CrossRefGoogle Scholar
  12. Chick LA, et al. Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater Lett. 1990;10:6–12.CrossRefGoogle Scholar
  13. Cho SG, Johnson PF, Condrate Sr RA. Thermal decomposition of (Sr, Ti) organic precursors during the Pechini process. J Mater Sci. 1990;25:4738–44.CrossRefGoogle Scholar
  14. Choe JY, et al. Alkoxy sol–gel derived Y3-xAl5O12:Tbx thin films as efficient cathodoluminescent phosphors. Appl Phys Lett. 2001;78:3800–2.CrossRefGoogle Scholar
  15. Choppali U, Gorman BP. Preferentially oriented ZnO thin films on basal plane sapphire substrates derived from polymeric precursors. Mater Chem Phys. 2008;112:916–22.CrossRefGoogle Scholar
  16. Chu C-T, Dunn B. Preparation of high-Tc superconducting oxides by the amorphous citrate process. J Am Ceram Soc. 1987;70:c375–7.CrossRefGoogle Scholar
  17. Courty P, Ajot H, Marcilly C, Delmon B. Oxydes mixtes ou en solution solide sous forme très divisée obtenus par décomposition thermique de précurseurs amorphes. Powder Technol. 1973;7:21–38.CrossRefGoogle Scholar
  18. Cui W, et al. YBa2Cu3O7-x thin films by citrate-based non-fluorine precursor. J Supercond Nov Magn. 2009;22:811–5.CrossRefGoogle Scholar
  19. Da Conceição L, Silva CRB, Ribeiro NFP, Souza MMVM. Influence of the synthesis method on the porosity, microstructure and electrical properties of La0.7Sr0.3MnO3 cathode materials. Mater Charact. 2009;60:1417–23.CrossRefGoogle Scholar
  20. Da Conceição L, Ribeiro NFP, Souza MMVM. Synthesis of La1-xSrxMnO3 powders by polymerizable complex method: evaluation of structural, morphological and electrical properties. Ceram Int. 2011;37:2229–36.CrossRefGoogle Scholar
  21. Ding X, Liu Y, Gao L, Guo L. Synthesis and characterization of doped LaCrO3 perovskite prepared by EDTA-citrate complexing method. J Alloys Compd. 2008;458:346–50.CrossRefGoogle Scholar
  22. Dominko R, et al. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc. 2005;152:A607–10.CrossRefGoogle Scholar
  23. Dominko R, Conte DE, Hanzel D, Gaberscek M, Jamnik J. Impact of synthesis conditions on the structure and performance of Li2FeSiO4. J Power Sources. 2008;178:842–7.CrossRefGoogle Scholar
  24. Duncan H, Abu-Lebdeh Y, Davidson IJ. Study of the cathode-electrolyte interface of LiMn1.5Ni0.5O4 synthesized by a sol–gel method for Li-ion batteries. J Electrochem Soc. 2010;157:A528–35.CrossRefGoogle Scholar
  25. Fan B, Liu X. A-deficit LSCF for intermediate temperature solid oxide fuel cells. Solid State Ion. 2009;180:973–7.CrossRefGoogle Scholar
  26. Farbun IA, Romanova IV, Kirillov SA. Optimal design of powdered nanosized oxides of high surface area and porosity using a citric acid aided route, with special reference to ZnO. J Sol–Gel Sci Technol. 2013;68:411–22.CrossRefGoogle Scholar
  27. Fontaine ML, Laberty-Robert C, Barnabé A, Ansart F, Tailhades P. Synthesis of La2-xNiO4+δ oxides by polymeric route: non-stoichoimetry control. Ceram Int. 2004;30:2087–98.CrossRefGoogle Scholar
  28. Gai S, Li C, Yang P, Lin J. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev. 2014;114:2343–89.CrossRefGoogle Scholar
  29. Garskaite E, Lindgren M, Einarsrud MA, Grande T. Luminescent properties of rare earth (Er, Yb) doped yttrium aluminium garnet thin films and bulk samples synthesised by an aqueous sol–gel technique. J Eur Ceram Soc. 2010;30:1707–15.CrossRefGoogle Scholar
  30. Gaudon M, Laberty-Robert C, Ansart F, Stevens P, Rousset A. Preparation and characterization of La1-xSrxMnO3+δ (0 ≤ x ≤ 0.6) powder by sol–gel processing. Solid State Sci. 2002;4:125–33.CrossRefGoogle Scholar
  31. Gehman BL, et al. Influence of manufacturing process of indium tin oxide sputtering targets on sputtering behavior. Thin Solid Films. 1992;220:333–6.CrossRefGoogle Scholar
  32. Ghosh S, Dasgupta S, Sen A, Maiti HS. Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route. J Am Ceram Soc. 2005a;88:1349–52.CrossRefGoogle Scholar
  33. Ghosh S, Dasgupta S, Sen A, Maiti HS. Low temperature synthesis of bismuth ferrite nanoparticles by a ferrioxalate precursor method. Mater Res Bull. 2005b;40:2073–9.CrossRefGoogle Scholar
  34. Ginley DS, Perkins JD. Transparent conductors. In: Ginley DS, Hosono H, Paine DC, editors. Handbook of transparent conductors. New York: Springer US; 2011. p. 1–25.CrossRefGoogle Scholar
  35. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22:587–603.CrossRefGoogle Scholar
  36. Gülgün MA, Nguyen MH, Kriven WM. Polymerized organic–inorganic synthesis of mixed oxides. J Am Ceram Soc. 1999;82:556–60.CrossRefGoogle Scholar
  37. Gupta RK, Whang CM. Effects of anion and synthesis route on the structure of (La0.9Sr0.1)(Cr0.85Fe0.05Co0.05Ni0.05)O3-δ perovskite and removal of impurity phases. Solid State Ion. 2007;178:1617–26.CrossRefGoogle Scholar
  38. Han YS, Kim HG. Synthesis of LiMn2O4 by modified Pechini method and characterization as a cathode for rechargeable Li/LiMn2O4 cells. J Power Sources. 2000;88:161–8.CrossRefGoogle Scholar
  39. Hardy A, et al. Gel structure, gel decomposition and phase formation mechanisms in the aqueous solution-gel route to lanthanum substituted bismuth titanate. J Sol–Gel Sci Technol. 2005;33:283–98.CrossRefGoogle Scholar
  40. Hardy A, et al. Effects of precursor chemistry and thermal treatment conditions on obtaining phase pure bismuth ferrite from aqueous gel precursors. J Eur Ceram Soc. 2009;29:3007–13.CrossRefGoogle Scholar
  41. Huang X, Han S, Huang W, Liu X. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev. 2013;42:173–201.CrossRefGoogle Scholar
  42. Iguchi T, Araki T, Yamada Y, Hirabayashi I, Ikuta H. Fabrication of Gd-Ba-Cu-O films by the metal-organic deposition method using trifluoroacetates. Supercond Sci Technol. 2002;15:1415–20.CrossRefGoogle Scholar
  43. Jiang SP. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J Mater Sci. 2008;43:6799–833.CrossRefGoogle Scholar
  44. Jiang QH, Nan CW, Shen ZJ. Synthesis and properties of multiferroic La-modified BiFeO3 ceramics. J Am Ceram Soc. 2006;89:2123–7.CrossRefGoogle Scholar
  45. Kakihana M. Invited review “sol–gel” preparation of high temperature superconducting oxides. J Sol–Gel Sci Technol. 1996;6:7–55.CrossRefGoogle Scholar
  46. Kakihana M, Yoshimura M. Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method. Bull Chem Soc Jpn. 1999;72:1427–43.CrossRefGoogle Scholar
  47. Kakihana M, Börjesson L, Eriksson S, Svedlindh P, Norling P. Synthesis of highly pure YBa2Cu3O7-δ superconductors using a colloidal processing technique. Phys C. 1989;162–164:931–2.CrossRefGoogle Scholar
  48. Kakihana M, Börjesson L, Eriksson S, Svedlindh P. Fabrication and characterization of highly pure and homogeneous YBa2Cu3O7 superconductors from sol–gel derived powders. J Appl Phys. 1991;69:867–73.CrossRefGoogle Scholar
  49. Kakihana M, et al. Polymerized complex route to synthesis of pure Y2Ti2O7 at 750°C using yttrium-titanium mixed-metal citric acid complex. J Am Ceram Soc. 1996;79:1673–6.CrossRefGoogle Scholar
  50. Kakihana M, Arima M, Yoshimura M, Ikeda N, Sugitani Y. Synthesis of high surface area LaMnO3+d by a polymerizable complex method. J Alloys Compd. 1999;283:102–5.CrossRefGoogle Scholar
  51. Kamat RV, Vittal Rao TV, Pillai KT, Vaidya VN, Sood DD. Preparation of high grade YBCO powders and pellets through the glycerol route. Phys C. 1991;181:245–51.CrossRefGoogle Scholar
  52. Kang S, et al. High-performance high-Tc superconducting wires. Science. 2006;311:1911–4.CrossRefGoogle Scholar
  53. Karen P, Kjekshus A. Citrate-gel syntheses in the Y(O)-Ba(O)-Cu(O) system. J Am Ceram Soc. 1994;77:547–52.CrossRefGoogle Scholar
  54. Kim BC, Kim SM, Lee JH, Kim JJ. Effect of phase transformation on the densification of coprecipitated nanocrystalline indium tin oxide powders. J Am Ceram Soc. 2002;85:2083–8.CrossRefGoogle Scholar
  55. Kim JK, Kim SS, Kim WJ. Sol–gel synthesis and properties of multiferroic BiFeO3. Mater Lett. 2005;59:4006–9.CrossRefGoogle Scholar
  56. Kim SM, et al. Preparation and sintering of nanocrystalline ITO powders with different SnO2 content. J Eur Ceram Soc. 2006;26:73–80.CrossRefGoogle Scholar
  57. Kodaira CA, Brito HF, Felinto MCFC. Luminescence investigation of Eu3+ ion in the RE2(WO4)3 matrix (RE = La and Gd) produced using the Pechini method. J Solid State Chem. 2003;171:401–7.CrossRefGoogle Scholar
  58. Kundu S, Biswas PK. Synthesis of nanostructured sol–gel ITO films at different temperatures and study of their absorption and photoluminescence properties. Opt Mater. 2008;31:429–33.CrossRefGoogle Scholar
  59. Kunduraci M, Amatucci GG. Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc. 2006;153:A1345–52.CrossRefGoogle Scholar
  60. Kunduraci M, Amatucci GG. The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+δNi0.5-δO4 spinel lithium-ion battery cathodes. Electrochim Acta. 2008;53:4193–9.CrossRefGoogle Scholar
  61. Larbalestier D, Gurevich A, Feldmann DM, Polyanskii A. High-Tc superconducting materials for electric power applications. Nature. 2001;414:368–77.CrossRefGoogle Scholar
  62. Lee HK, Kim D, Suck SI. Superconducting transition and Raman spectrum of Y1Ba2Cu3O7-x prepared by polymeric precursor synthesis. J Appl Phys. 1989;65:2563–5.CrossRefGoogle Scholar
  63. Legnani C, et al. Indium tin oxide films prepared via wet chemical route. Thin Solid Films. 2007;516:193–7.CrossRefGoogle Scholar
  64. Leonard NM, Wieland LC, Mohan RS. Applications of bismuth(III) compounds in organic synthesis. Tetrahedron. 2002;58:8373–97.CrossRefGoogle Scholar
  65. Li DC, Muta T, Zhang LQ, Yoshio M, Noguchi H. Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2. J Power Sources. 2004;132:150–5.CrossRefGoogle Scholar
  66. Li L, et al. Synthesis and luminescent properties of high brightness MLa(WO4)2:Eu3+ (M = Li, Na, K) and NaRE(WO4)2:Eu3+ (RE = Gd, Y, Lu) red phosphors. J Lumin. 2013;143:14–20.CrossRefGoogle Scholar
  67. Lima SAM, Cremona M, Davolos MR, Legnani C, Quirino WG. Electroluminescence of zinc oxide thin-films prepared via polymeric precursor and via sol–gel methods. Thin Solid Films. 2007;516:165–9.CrossRefGoogle Scholar
  68. Lin J, Yu M, Lin C, Liu X. Multiform oxide optical materials via the versatile pechini-type sol–gel process: synthesis and characteristics. J Phys Chem C. 2007;111:5835–45.CrossRefGoogle Scholar
  69. Lin YH, Nelson J, Goldman AM. Superconductivity of very thin films: the superconductor-insulator transition. Phys C. 2015;514:130–41.CrossRefGoogle Scholar
  70. Liu RS, Wang WN, Chang CT, Wu PT. Synthesis and characterization of high-Tc superconducting oxides by the modified citrate gel process. Jpn J Appl Phys. 1989;28:L2155–7.CrossRefGoogle Scholar
  71. Liu W, Farrington GC, Chaput F, Dunn B. Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the Pechini process. J Electrochem Soc. 1996;143:879–84.CrossRefGoogle Scholar
  72. Liu X, Lin C, Lin J. White light emission from Eu3+ in CaIn2O4 host lattices. Appl Phys Lett. 2007;90:81904.CrossRefGoogle Scholar
  73. Liu T, Xu Y, Zhao J. Low-temperature synthesis of BiFeO3 via PVA sol–gel route. J Am Ceram Soc. 2010;93:3637–41.CrossRefGoogle Scholar
  74. Liu X, Huang T, Yu A. Fe doped Li1.2Mn0.6-x/2Ni0.2-x/2FexO2 (x ≤ 0.1) as cathode materials for lithium-ion batteries. Electrochim Acta. 2014;133:555–63.CrossRefGoogle Scholar
  75. Lü Y, et al. Color-tunable luminescence of YNbO4:Ln3+ (Ln3+ = Dy3+ and/or Eu3+) nanocrystalline phosphors prepared by a sol–gel process. Eur J Inorg Chem. 2015;2015:5262–71.CrossRefGoogle Scholar
  76. Magnone E, Traversa E, Miyayama M. Synthesis and thermal analysis of the strontium and iron-doped lanthanum cobaltite nano-powder precursors. J Ceram Soc Jpn. 2007;115:402–8.CrossRefGoogle Scholar
  77. Marcilly C, Delmon B, Sugier A. New process for obtaining finely divided homogeneous oxides of many elements. In: Editor^Editors. French Patent, P.V. 110,438 applied June 14, 1967.Google Scholar
  78. Marcilly C, Courty P, Delmon B. Preparation of highly dispersed mixed oxides and oxide solid solutions by pyrolysis of amorphous organic precursors. J Am Ceram Soc. 1970;53:56–7.CrossRefGoogle Scholar
  79. Martinez-Rubio MI, Ireland TG, Fern GR, Silver J, Snowden MJ. A new application microgels: novel method for the synthesis of spherical particles of the Y2O3:Eu phosphor using a copolymer microgel of NIPAM and acrylic acid. Langmuir. 2001;17:7145–9.CrossRefGoogle Scholar
  80. Mazaki H, Kakihana M, Yasuoka H. Synthesis of YBa2Cu4Oy from citrate sol–gel precursors. J Jpn Soc Powder Metall. 1991;38:211–4.CrossRefGoogle Scholar
  81. Mei T, Zhu Y, Tang K, Qian Y. Synchronously synthesized core-shell LiNi1/3Co1/3Mn1/3O2/carbon nanocomposites as cathode materials for high performance lithium ion batteries. RSC Adv. 2012;2:12886–91.CrossRefGoogle Scholar
  82. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. LixCoO2 (0 < x < −1): a new cathode material for batteries of high energy density. Mater Res Bull. 1980;15:783–9.CrossRefGoogle Scholar
  83. Moskon J, Dominko R, Cerc-Korosec R, Gaberscek M, Jamnik J. Morphology and electrical properties of conductive carbon coatings for cathode materials. J Power Sources. 2007;174:683–8.CrossRefGoogle Scholar
  84. Nadaud N, Nanot M, Boch P. Sintering and electrical properties of titania- and zirconia-containing In2O3-SnO2 (ITO) ceramics. J Am Ceram Soc. 1994;77:843–6.CrossRefGoogle Scholar
  85. Niou CS, Ma YT, Li WP, Javadpour J, Murr LE. Preparation of superconducting YBa2Cu3O7-x powders by a solution technique. J Mater Sci-Mater Electron. 1992;3:181–6.CrossRefGoogle Scholar
  86. Nityanand C, Nalin WB, Rajkumar BS, Chandra CM. Synthesis and physicochemical characterization of nanocrystalline cobalt doped lanthanum strontium ferrite. Solid State Sci. 2011;13:1022–30.CrossRefGoogle Scholar
  87. Norton DP. Epitaxial growth of superconducting cuprate thin films. In: N. Khare, editors. Handbook of high-temperature superconductor. CRC Press, Boca Raton, Florida 2003.Google Scholar
  88. Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas JO. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun. 2005;7:156–60.CrossRefGoogle Scholar
  89. Obradors X, et al. Chemical solution deposition: a path towards low cost coated conductors. Supercond Sci Technol. 2004;17:1055–64.CrossRefGoogle Scholar
  90. Obradors X, et al. Progress towards all-chemical superconducting YBa2Cu3O7-coated conductors. Supercond Sci Technol. 2006;19:S13–26.CrossRefGoogle Scholar
  91. Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144:1188–94.CrossRefGoogle Scholar
  92. Pang ML, et al. Patterning and luminescent properties of nanocrystalline Y2O3:Eu3+ phosphor films by sol–gel soft lithography. J Mater Sci-Mater Electron. 2003;100:124–31.Google Scholar
  93. Park TJ, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS. Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 2007;7:766–72.CrossRefGoogle Scholar
  94. Pathak LC, Mishra SK. A review on the synthesis of Y-Ba-Cu-oxide powder. Supercond Sci Technol. 2005;18:R67–89.CrossRefGoogle Scholar
  95. Patra H, Rout SK, Pratihar SK, Bhattacharya S. Effect of process parameters on combined EDTA-citrate synthesis of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite. Powder Technol. 2011;209:98–104.CrossRefGoogle Scholar
  96. Pechini MP. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. In: Editor^Editors. US Patent 3:330,697 1967.Google Scholar
  97. Popa M, Crespo D, Calderon-Moreno JM, Preda S, Fruth V. Synthesis and structural characterization of single-phase BiFeO3 powders from a polymeric precursor. J Am Ceram Soc. 2007;90:2723–7.CrossRefGoogle Scholar
  98. Predoana L, Jitianu A, Voicescu M, Apostol NG, Zaharescu M. Study of formation of LiCoO2 using a modified Pechini aqueous sol–gel process. J Sol–Gel Sci Technol. 2015;74:406–18.CrossRefGoogle Scholar
  99. Psuja P, Hreniak D, Strek W. Fabrication, properties and possible applications of pure and Eu3+ doped SnO2 and In2O3/SnO2 (ITO) nanocrystallites. In: Proceedings of 2007 International Students and Young Scientists Workshop “Photonics and Microsystems”, STYSW 2007; 2007.Google Scholar
  100. Robertson JM, Van Tol MW. Epitaxially grown monocrystalline garnet cathode-ray tube phosphor screens. Appl Phys Lett. 1980;37:471–2.CrossRefGoogle Scholar
  101. Rocha RA, Muccillo ENS. Synthesis and thermal decomposition of a polymeric precursor of the La2Mo2O9 compound. Chem Mater. 2003;15:4268–72.CrossRefGoogle Scholar
  102. Rørvik PM, Tadanaga K, Tatsumisago M, Grande T, Einarsrud MA. Template-assisted synthesis of PbTiO3 nanotubes. J Eur Ceram Soc. 2009;29:2575–9.CrossRefGoogle Scholar
  103. Rossen E, Reimers JN, Dahn JR. Synthesis and electrochemistry of spinel LT-LiCoO2. Solid State Ion. 1993;62:53–60.CrossRefGoogle Scholar
  104. Rupich MW, Verebelyi DT, Zhang W, Kodenkandath T, Li X. Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires. MRS Bull. 2004;29:572–8. +539-541.CrossRefGoogle Scholar
  105. Sanjines R, Ravindranathan Thampi K, Kiwi J. Preparation of monodispersed Y-Ba-Cu-O superconductor particles via sol–gel methods. J Am Ceram Soc. 1988;71:512–4.Google Scholar
  106. Schumm B, Wollmann P, Fritsch J, Grothe J, Kaskel S. Nanoimprint patterning of thin cadmium stannate films using a polymeric precursor route. J Mater Chem. 2011;21:10697–704.CrossRefGoogle Scholar
  107. Schwartz RW, Schneller T, Waser R. Chemical solution deposition of electronic oxide films. C R Chim. 2004;7:433–61.CrossRefGoogle Scholar
  108. Selbach SM, Einarsrud MA, Tybell T, Grande T. Synthesis of BiFeO3 by wet chemical methods. J Am Ceram Soc. 2007;90:3430–4.CrossRefGoogle Scholar
  109. Selbach SM, Einarsrud MA, Grande T. On the thermodynamic stability of BiFeO3. Chem Mater. 2009;21:169–73.CrossRefGoogle Scholar
  110. Serra OA, Cicillini SA, Ishiki RR. A new procedure to obtain Eu3+ doped oxide and oxosalt phosphors. J Alloys Compd. 2000;303–304:316–9.CrossRefGoogle Scholar
  111. Shang M, et al. Blue emitting Ca8La2(PO4)6O2:Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties. J Phys Chem C. 2012;116:10222–31.CrossRefGoogle Scholar
  112. Shao J, Tao Y, Wang J, Xu C, Wang WG. Investigation of precursors in the preparation of nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ via a modified combined complexing method. J Alloys Compd. 2009;484:263–7.CrossRefGoogle Scholar
  113. Shetty S, Palkar VR, Pinto R. Size effect study in magnetoelectric BiFeO3 system. Pranama J Phys. 2002;58:1027–30.CrossRefGoogle Scholar
  114. Shi D, et al. The development of YBa2Cu3Ox thin films using a fluorine-free sol–gel approach for coated conductors. Supercond Sci Technol. 2004;17:1420–5.CrossRefGoogle Scholar
  115. Shiomi Y, Asaka T, Tachikawa K. Superconducting properties and structures of high-Tc oxides prepared by a citric acid salt process. IEEE Trans Appl Supercond. 1993;3:1170–3.CrossRefGoogle Scholar
  116. Shur MS, Žukauskas A. Solid-state lighting: toward superior illumination. Proc IEEE. 2005;93:1691–703.CrossRefGoogle Scholar
  117. Sladkevich S, et al. Antimony doped tin oxide coating of muscovite clays by the Pechini route. Thin Solid Films. 2011;520:152–8.CrossRefGoogle Scholar
  118. Sletnes M, Skjærvø SL, Lindgren M, Grande T, Einarsrud MA. Luminescent Eu3+-doped NaLa(WO4)(MoO4) and Ba2CaMoO6 prepared by the modified Pechini method. J Sol–Gel Sci Technol. 2016;77:136–44.CrossRefGoogle Scholar
  119. Smet PF, Parmentier AB, Poelman D. Selecting conversion phosphors for white light-emitting diodes. J Electrochem Soc. 2011;158:R37–54.CrossRefGoogle Scholar
  120. Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–9.CrossRefGoogle Scholar
  121. Sunde TOL, et al. Transparent and conducting ITO thin films by spin coating of an aqueous precursor solution. J Mater Chem. 2012;22:15740–9.CrossRefGoogle Scholar
  122. Sunde TOL, Einarsrud MA, Grande T. Solid state sintering of nano-crystalline indium tin oxide. J Eur Ceram Soc. 2013;33:565–74.CrossRefGoogle Scholar
  123. Sunde TOL, Einarsrud MA, Grande T. Optimisation of chemical solution deposition of indium tin oxide thin films. Thin Solid Films. 2014;573:48–55.CrossRefGoogle Scholar
  124. Tai LW, Lessing PA. Modified resin – intermediate processing of perovskite powders: Part I. Optimization of polymeric precursors. J Mater Res. 1992a;7:502–10.CrossRefGoogle Scholar
  125. Tai LW, Lessing PA. Modified resin – intermediate processing of perovskite powders: Part II. Processing for fine, nonagglomerated Sr-doped lanthanum chromite powders. J Mater Res. 1992b;7:511–9.CrossRefGoogle Scholar
  126. Tao S, Irvine JTS. Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs. J Electrochem Soc. 2004;151:A252–9.CrossRefGoogle Scholar
  127. Tarascon JM, Wang E, Shokoohi FK, McKinnon WR, Colson S. Spinel phase of LiMn2O4 as a cathode in secondary lithium cells. J Electrochem Soc. 1991;138:2859–64.CrossRefGoogle Scholar
  128. The IUPAC Stability Constants Database, Academic Software. http://www.acadsoft.co.uk/
  129. Thuy TT, et al. Sol–gel chemistry of an aqueous precursor solution for YBCO thin films. J Sol–Gel Sci Technol. 2009;52:124–33.CrossRefGoogle Scholar
  130. Van der Biest O, et al. Ceramic superconductors synthesized by sol–gel methods. Phys C. 1991;190:119–21.CrossRefGoogle Scholar
  131. Vojnovich T, Bratton RJ. Impurity effects on sintering and electrical resistivity of indium oxide. Am Ceram Soc Bull. 1975;54:216–7.Google Scholar
  132. Wang J, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 2003;299:1719–22.CrossRefGoogle Scholar
  133. Wang H, Lin CK, Liu XM, Lin J, Yu M. Monodisperse spherical core-shell-structured phosphors obtained by functionalization of silica spheres with Y2O3:Eu3+ layers for field emission displays. Appl Phys Lett. 2005;87:1–3.Google Scholar
  134. Wang WT, et al. Chemical solution deposition of YBCO thin film by different polymer additives. Phys C. 2008a;468:1563–6.CrossRefGoogle Scholar
  135. Wang Z, et al. NaEu0.96Sm0.04(MoO4)2 as a promising red-emitting phosphor for LED solid-state lighting prepared by the Pechini process. J Lumin. 2008b;128:147–54.CrossRefGoogle Scholar
  136. Wang H, Xu X, Li X, Zhang J, Li C. Synthesis and sintering of indium tin oxide nanoparticles by citrate-nitrate combustion method. Rare Met. 2010;29:355–60.CrossRefGoogle Scholar
  137. Wu MK, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys Rev Lett. 1987;58:908–10.CrossRefGoogle Scholar
  138. Xia H, Wang H, Xiao W, Lu L, Lai MO. Properties of LiNi1/3Co1/3Mn1/3O2 cathode material synthesized by a modified Pechini method for high-power lithium-ion batteries. J Alloys Compd. 2009;480:696–701.CrossRefGoogle Scholar
  139. Xiong L, Xu Y, Tao T, Goodenough JB. Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries. J Power Sources. 2012;199:214–9.CrossRefGoogle Scholar
  140. Yang YM, et al. Characterization of YBa2Cu3O7-x bulk samples prepared by citrate synthesis and solid-state reaction. J Appl Phys. 1989;66:312–5.CrossRefGoogle Scholar
  141. Ye S, Li Y, Yu D, Yang Z, Zhang Q. Structural effects on Stokes and anti-Stokes luminescence of double-perovskite (Ba, Sr)2CaMoO6: Yb3+, Eu3+. J Appl Phys. 2011;110:013517.CrossRefGoogle Scholar
  142. Yu M, Lin J, Wang SB. Effects of x and R3+ on the luminescent properties of Eu3+ in nanocrystalline YVxP1-xO4:Eu3+ and RVO4:Eu3+ thin-film phosphors. Appl Phys Mater Sci Process. 2005;80:353–60.CrossRefGoogle Scholar
  143. Zalga A, Moravec Z, Pinkas J, Kareiva A. On the sol–gel preparation of different tungstates and molybdates. J Therm Anal Calorim. 2011;105:3–11.CrossRefGoogle Scholar
  144. Zhang H, Fu X, Niu S, Xin Q. Synthesis and photoluminescence properties of Eu-doped AZrO3 (A = Ca, Sr, Ba) perovskite. J Alloys Compd. 2008;459:103–6.CrossRefGoogle Scholar
  145. Zhang L, et al. Li3V2(PO4)3@C/graphene composite with improved cycling performance as cathode material for lithium-ion batteries. Electrochim Acta. 2013;91:108–13.CrossRefGoogle Scholar
  146. Zhao Y, Sun G, Wu R. Synthesis of nanosized Fe-Mn based Li-rich cathode materials for lithium-ion battery via a simple method. Electrochim Acta. 2013;96:291–7.CrossRefGoogle Scholar
  147. Zhu WZ, Deevi SC. Development of interconnect materials for solid oxide fuel cells. Mater Sci Eng A. 2003;348:227–43.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tor Olav Løveng Sunde
    • 1
  • Tor Grande
    • 2
  • Mari-Ann Einarsrud
    • 2
  1. 1.Department of Sustainable Energy TechnologySINTEF Materials and ChemistryOsloNorway
  2. 2.Department of Materials Science and EngineeringNTNU Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations