Atomistic Simulation of Sol–Gel-Derived Hybrid Materials

  • Thomas S. Asche
  • Mirja Duderstaedt
  • Peter Behrens
  • Andreas M. SchneiderEmail author
Living reference work entry


The amorphous nature and complex structure of sol–gel-derived hybrid materials often prohibit an experimental determination of the underlying atomistic and molecular structures in detail. Atomistic modeling methods provide an insight into these structures and are an effective tool for a better understanding of material behavior in general.

This chapter gives a short introduction to sophisticated hybrid polymers and different modeling approaches for these materials. As classical force field simulations are the method of choice for most problems, different methods to validate the results of this type of calculations are presented. Three hybrid polymer systems of different complexity are presented as model systems in detail. A generalized step-by-step simulation scheme is provided which can be applied to similar sol–gel-derived hybrid materials or polymers.


Force Field Hybrid Material Polymer Model Hybrid Polymer Organic Hybrid Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the State of Lower Saxony for general support of this work. T.S.A. and M.D. are grateful for fellowships obtained within the framework of the Graduate Program MARIO, also funded by the State of Lower Saxony. This work benefited from the cooperation within the research initiative Biofabrication for NIFE, funded by the Volkswagenstiftung and the State of Lower Saxony.


  1. Abbott LJ, Hart KE, Colina CM. Polymatic: a generalized simulated polymerization algorithm for amorphous polymers. Theor Chem Accounts. 2013;132:1334.CrossRefGoogle Scholar
  2. Abell GC. Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys Rev B. 1985;31:6184–96.CrossRefGoogle Scholar
  3. Allcock HR. Inorganic–organic polymers. Adv Mater. 1994;6:106–15.CrossRefGoogle Scholar
  4. Amberg-Schwab S, Hoffmann M, Bader H, Gessler M. Inorganic–organic polymers with barrier properties for water vapor, oxygen and flavors. J Sol–Gel Sci Technol. 1998;1(2):141–6.CrossRefGoogle Scholar
  5. Asche TS, Behrens P, Schneider AM. Validation of the COMPASS force field for complex inorganic–organic hybrid polymers. submitted. 2016.Google Scholar
  6. Avnir D. Organic chemistry within ceramic matrices: doped sol–gel materials. Acc Chem Res. 1995;28:328–34.CrossRefGoogle Scholar
  7. Bacchi A, Feitosa V, da Silva Fonseca AQ, Cavalcante LA, Silikas N, Schneider LJ. Shrinkage, stress, and modulus of dimethacrylate, ormocer, and silorane composites. J Conserv Dent. 2015;18:384–8.CrossRefGoogle Scholar
  8. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–90.CrossRefGoogle Scholar
  9. Bharadwaj RK. Molecular dynamics simulation study of norbornene-POSS polymers. Polymer. 2000;41:7209–21.CrossRefGoogle Scholar
  10. Binder K. Monte Carlo methods in statistical physics. 2nd ed. Berlin: Springer; 1986.CrossRefGoogle Scholar
  11. Bizet S, Galy J, Gérard J-F. Molecular dynamics simulation of organic–inorganic copolymers based on methacryl-POSS and methyl methacrylate. Polymer. 2006;47:8219–27.CrossRefGoogle Scholar
  12. Brenner DW. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B. 1990;42:9458–71.CrossRefGoogle Scholar
  13. Brenner DW. Erratum: empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B. 1992;46:1948.CrossRefGoogle Scholar
  14. Brenner DW, Harrison JA, White CT, Colton RJ. Molecular dynamics simulations of the nanometer-scale mechanical properties of compressed Buckminsterfullerene. Thin Solid Films. 1991;206:220–3.CrossRefGoogle Scholar
  15. Brinker CJ, Scherer GW. Sol–gel science: the physics and chemistry of sol–gel processing. 1st ed. San Diego: Academic; 1990.Google Scholar
  16. Buestrich R, Kahlenberg F, Popall M, Dannberg P, Müller-Fiedler R, Rösch O. ORMOCER®s for optical interconnection technology. J Sol–gel Sci Technol. 2001;20:181–6.CrossRefGoogle Scholar
  17. Burmeister F, Steenhusen S, Houbertz R, Zeitner UD, Nolte S, Tünnermann A. Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization. J Laser Appl. 2012;24:042014.CrossRefGoogle Scholar
  18. Burmeister F, Steenhusen S, Houbertz R, Asche TS, Nickel J, Nolte S, Tucher N, Josten P, Obel K, Wolter H, Fessel S, Schneider AM, Gärtner K-H, Beck C, Behrens P, Tünnermann A, Walles H. Chapter 5, Two-photon polymerization of inorganic–organic polymers for biomedical and microoptical applications. In: König K, Ostendorf A, editors. Optically induced nanostructures. Boston: Walter de Gruyter Inc; 2015. p. 239–66.Google Scholar
  19. Chenoweth K, Cheung S, van Duin ACT, Goddard WA, Kober EM. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. J Am Chem Soc. 2005;127:7192–202.CrossRefGoogle Scholar
  20. Dassault Systèmes BIOVIA. BIOVIA materials studio. San Diego, CA 92121: USA; 2014.Google Scholar
  21. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins Struct Funct Genet. 1988;4:31–47.CrossRefGoogle Scholar
  22. de Jaeger R, Gleria M, editors. Inorganic polymers. New York: Nova Science Publishers; 2007.Google Scholar
  23. de Jong DH, Singh G, Bennett WFD, Arnarez C, Wassenaar TA, Schäfer LV, Periole X, Tieleman DP, Marrink SJ. Improved parameters for the martini coarse-grained protein force field. J Chem Theory Comput. 2013;9:687–97.CrossRefGoogle Scholar
  24. de Pablo JJ. Coarse-grained simulations of macromolecules: from DNA to nanocomposites. Annu Rev Phys Chem. 2011;62:555–74.CrossRefGoogle Scholar
  25. Deetz JD, Faller R. Parallel optimization of a reactive force field for polycondensation of alkoxysilanes. J Phys Chem B. 2014;118:10966–78.CrossRefGoogle Scholar
  26. Deetz JD, Faller R. Reactive modeling of the initial stages of alkoxysilane polycondensation: effects of precursor molecule structure and solution composition. Soft Matter. 2015a;11:6780–9.CrossRefGoogle Scholar
  27. Deetz JD, Faller R. Reactive molecular dynamics simulations of siliceous solids polycondensed from tetra- and trihydroxysilane. J Non Cryst Solids. 2015b;429:183–9.CrossRefGoogle Scholar
  28. Drisko GL, Sanchez C. Hybridization in materials science – evolution, current state, and future aspirations. Eur J Inorg Chem. 2012;2012:5097–105.CrossRefGoogle Scholar
  29. Elanany M, Selvam P, Yokosuka T, Takami S, Kubo M, Imamura A, Miyamoto A. A quantum molecular dynamics simulation study of the initial hydrolysis step in sol–gel process. J Phys Chem B. 2003;107:1518–24.CrossRefGoogle Scholar
  30. El-Murr J, Ruel D, St-Georges AJ. Effects of external bleaching on restorative materials: a review. J Can Dent Assoc. 2011;77:b59.Google Scholar
  31. Engelhardt G, Michel D. High-resolution solid-state NMR of silicates and zeolites. Chichester: Wiley; 1987.Google Scholar
  32. Ewald PP. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys. 1921;369:253–87.CrossRefGoogle Scholar
  33. Fessel S. Zur Zweiphotonenpolymerisation von ORMOCER®en: Modellierung und strukturelle Untersuchungen. Dissertation, Leibniz Universität. Hannover; 2013Google Scholar
  34. Fessel S, Schneider AM, Steenhusen S, Houbertz R, Behrens P. Towards an atomistic model for ORMOCER®-I: application of forcefield methods. J Sol–gel Sci Technol. 2012;63:356–65.CrossRefGoogle Scholar
  35. Gilman JW. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci. 1999;15:31–49.CrossRefGoogle Scholar
  36. Göppert-Mayer M. Über Elementarakte mit zwei Quantensprüngen. Ann Phys. 1931;401:273–94.CrossRefGoogle Scholar
  37. Haas K-H, Rose K. Hybrid inorganic/organic polymers with nanoscale building blocks: precursors, processing, properties and applications. Rev Adv Mater Sci. 2003;5:47–52.Google Scholar
  38. Haas K-H, Wolter H. Synthesis, properties and applications of inorganic–organic copolymers (ORMOCER®s). Curr Opin Solid State Mater Sci. 1999;4:571–80.CrossRefGoogle Scholar
  39. Haas K-H, Amberg-Schwab S, Rose K. Functionalized coating materials based on inorganic–organic polymers. Thin Solid Films. 1999;351:198–203.CrossRefGoogle Scholar
  40. Hairer E, Lubich C, Wanner G. Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer. 2003;12:399–450.CrossRefGoogle Scholar
  41. Halgren TA. Merck molecular force field. III. molecular geometries and vibrational frequencies for MMFF94. J Comput Chem. 1996;17:553–86.CrossRefGoogle Scholar
  42. Henschel H, Schneider AM, Prosenc MH. Initial steps of the sol–gel process: modeling silicate condensation in basic medium. Chem Mater. 2010;22:5105–11.CrossRefGoogle Scholar
  43. Hofmann D, Fritz L, Ulbrich J, Paul D. Molecular simulation of small molecule diffusion and solution in dense amorphous polysiloxanes and polyimides. Comput Theor Polym Sci. 2000;10:419–36.CrossRefGoogle Scholar
  44. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–71.CrossRefGoogle Scholar
  45. Houbertz R, Domann G, Cronauer C, Schmitt A, Martin H, Park J-U, Fröhlich L, Buestrich R, Popall M, Streppel U, Dannberg P, Wächter C, Bräuer A. Inorganic–organic hybrid materials for application in optical devices. Thin Solid Films. 2003a;442:194–200.CrossRefGoogle Scholar
  46. Houbertz R, Fröhlich L, Popall M, Streppel U, Dannberg P, Bräuer A, Serbin J, Chichkov BN. Inorganic–organic hybrid polymers for information technology: from planar technology to 3D nanostructures. Adv Eng Mater. 2003b;5:551–5.CrossRefGoogle Scholar
  47. Houbertz R, Domann G, Schulz J, Olsowski B, Fröhlich L, Kim W-S. Impact of photoinitiators on the photopolymerization and the optical properties of inorganic–organic hybrid polymers. Appl Phys Lett. 2004;84:1105–7.CrossRefGoogle Scholar
  48. Hu H, Hou H, He Z, Wang B. Theoretical characterizations of the mechanism for the dimerization of monosilicic acid in basic solution. Phys Chem Chem Phys. 2013;15:15027–32.CrossRefGoogle Scholar
  49. Ionita M. Multiscale molecular modeling of SWCNTs/epoxy resin composites mechanical behaviour. Composites Part B Eng. 2012;43:3491–6.CrossRefGoogle Scholar
  50. Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU. Relative reactivity volume criterion for cross-linking: application to vinyl ester resin molecular dynamics simulations. Macromolecules. 2012;45:4876–85.CrossRefGoogle Scholar
  51. Kahlenberg F. Structure–property Correlations in Fluoroaryl Functionalized Inorganic–organic Hybrid Polymers for Telecom Applications. Dissertation, Julius-Maximilians-Universität, Würzburg; 2004.Google Scholar
  52. Kasemann R, Schmidt H. Coatings for mechanical and chemical protection based on organic–inorganic sol–gel nanocomposites. New J Chem. 1994;18:1117–23.Google Scholar
  53. Kickelbick G, editor. Hybrid materials. Synthesis, characterization, and applications. 1st ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2007.Google Scholar
  54. Kim W-S, Houbertz R, Lee TH, Bae BS. Effect of photoinitiator on photopolymerization of inorganic–organic hybrid polymers (ORMOCER®). J Polym Sci Part B Polym Phys. 2004;42:1979–86.CrossRefGoogle Scholar
  55. Kim W-S, Kim K-S, Eo Y-J, Yoon KB, Bae B-S. Synthesis of fluorinated hybrid material for UV embossing of a large core optical waveguide structure. J Mater Chem. 2005;15:465.CrossRefGoogle Scholar
  56. Lange J, Wyser Y. Recent innovations in barrier technologies for plastic packaging – a review. Packag Technol Sci. 2003;16:149–58.CrossRefGoogle Scholar
  57. Leprince J, Palin WM, Mullier T, Devaux J, Vreven J, Leloup G. Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. J Oral Rehabil. 2010;37:364–76.CrossRefGoogle Scholar
  58. Levine IN. Quantum chemistry. 7th ed. Upper Saddle River: Pearson Education International; 2013.Google Scholar
  59. Li C, Strachan A. Molecular scale simulations on thermoset polymers: a review. J Polym Sci Part B Polym Phys. 2015;53:103–22.CrossRefGoogle Scholar
  60. López CA, Rzepiela AJ, de Vries AH, Dijkhuizen L, Hünenberger PH, Marrink SJ. Martini coarse-grained force field: extension to carbohydrates. J Chem Theory Comput. 2009;5:3195–210.CrossRefGoogle Scholar
  61. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111:7812–24.CrossRefGoogle Scholar
  62. Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett. 1997;22:132–4.CrossRefGoogle Scholar
  63. Matějka L, Strachota A, Pleštil J, Whelan P, Steinhart M, Šlouf M. Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Structure and morphology. Macromolecules. 2004;37:9449–56.CrossRefGoogle Scholar
  64. McIntosh GJ. Theoretical investigations into the nucleation of silica growth in basic solution part I – ab initio studies of the formation of trimers and tetramers. Phys Chem Chem Phys. 2013a;15:3155–72.CrossRefGoogle Scholar
  65. McIntosh GJ. Theoretical investigations into the nucleation of silica growth in basic solution part II – derivation and benchmarking of a first principles kinetic model of solution chemistry. Phys Chem Chem Phys. 2013b;15:17496.CrossRefGoogle Scholar
  66. Metroke TL, Parkhill RL, Knobbe ET. Passivation of metal alloys using sol–gel-derived materials – a review. Prog Org Coat. 2001;41:233–8.CrossRefGoogle Scholar
  67. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21:1087–92.CrossRefGoogle Scholar
  68. Ormocore and Ormoclad datasheet. Available from: Accessed 26 Jan 2016.
  69. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ. The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput. 2008;4:819–34.CrossRefGoogle Scholar
  70. Moszner N, Gianasmidis A, Klapdohr S, Fischer UK, Rheinberger V. Sol–gel materials: 2. Light-curing dental composites based on ormocers of cross-linking alkoxysilane methacrylates and further nano-components. Dent Mater. 2008;24:851–6.CrossRefGoogle Scholar
  71. Newsome DA, Sengupta D, Foroutan H, Russo MF, van Duin ACT. Oxidation of silicon carbide by O2 and H2O: a ReaxFF reactive molecular dynamics study part I. J Phys Chem C. 2012;116:16111–21.CrossRefGoogle Scholar
  72. Novak BM. Hybrid nanocomposite materials – between inorganic glasses and organic polymers. Adv Mater. 1993;5:422–33.CrossRefGoogle Scholar
  73. Pereira JCG, Catlow CRA, Price GD, Almeida RM. Atomistic modeling of silica based sol–gel processes. J Sol–gel Sci Technol. 1997;8:55–8.Google Scholar
  74. Pereira JCG, Catlow CRA, Price GD. Ab initio studies of silica-based clusters. part I. Energies and conformations of simple clusters. J Phys Chem A. 1999a;103:3252–67.CrossRefGoogle Scholar
  75. Pereira JCG, Catlow CRA, Price GD. Ab initio studies of silica-based clusters. part II. Structures and energies of complex clusters. J Phys Chem A. 1999b;103:3268–84.CrossRefGoogle Scholar
  76. Popall M, Andrei M, Kappel J, Kron J, Olma K, Olsowski B. ORMOCERs as inorganic–organic electrolytes for new solid state lithium batteries and supercapacitors. Electrochim Acta. 1998;43:1155–61.CrossRefGoogle Scholar
  77. Pursch M, Jäger A, Schneller T, Brindle R, Albert K, Lindner E. The sol–gel method: a new way to reversed phase materials. Synthesis and characterization by solid-state NMR spectroscopy. Chem Mater. 1996;8:1245–9.CrossRefGoogle Scholar
  78. Rappé AK, Goddard WA. Charge equilibration for molecular dynamics simulations. J Phys Chem. 1991;95:3358–63.CrossRefGoogle Scholar
  79. Rimsza JM, Deng L, Du J. Molecular dynamics simulations of nanoporous organosilicate glasses using reactive force field (ReaxFF). J Non Cryst Solids. 2016;431:103–11.CrossRefGoogle Scholar
  80. Rossi G, Monticelli L, Puisto SR, Vattulainen I, Ala-Nissila T. Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case. Soft Matter. 2011;7:698–708.CrossRefGoogle Scholar
  81. Sanchez C, Belleville P, Popall M, Nicole L. Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev. 2011;40:696–753.CrossRefGoogle Scholar
  82. Schottner G, Kron J, Deichmann A. Industrial application of hybrid sol–gel coatings for the decoration of crystal glassware. J Sol–gel Sci Technol. 1998;13:183–7.CrossRefGoogle Scholar
  83. Schottner G, Rose K, Posset U. Scratch and abrasion resistant coatings on plastic lenses – state of the art, current developments and perspectives. J Sol–gel Sci Technol. 2003;27:71–9.CrossRefGoogle Scholar
  84. Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Fröhlich L, Popall M. Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Opt Lett. 2003;28:301–3.CrossRefGoogle Scholar
  85. Shiu S-C, Tsai J-L. Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos Part B Eng. 2014;56:691–7.CrossRefGoogle Scholar
  86. Shokuhfar A, Arab B. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J Mol Model. 2013;19:3719–31.CrossRefGoogle Scholar
  87. Song X, Sun Y, Wu X, Zeng F. Molecular dynamics simulation of a novel kind of polymer composite incorporated with polyhedral oligomeric silsesquioxane (POSS). Comput Mater Sci. 2011;50:3282–9.CrossRefGoogle Scholar
  88. Stuart SJ, Tutein AB, Harrison JA. A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys. 2000;112:6472–86.CrossRefGoogle Scholar
  89. Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications – overview with details on alkane and benzene compounds. J Phys Chem B. 1998;102:7338–64.CrossRefGoogle Scholar
  90. Sun H, Rigby D. Polysiloxanes: ab initio force field and structural, conformational and thermophysical properties. Spectrochim Acta, Part A Mol Biomol Spectrosc. 1997;53:1301–23.CrossRefGoogle Scholar
  91. Tersoff J. New empirical model for the structural properties of silicon. Phys Rev Lett. 1986;56:632–5.CrossRefGoogle Scholar
  92. Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys Rev B. 1988a;37:6991–7000.CrossRefGoogle Scholar
  93. Tersoff J. Empirical interatomic potential for silicon with improved elastic properties. Phys Rev B. 1988b;38:9902–5.CrossRefGoogle Scholar
  94. Uusitalo JJ, Ingólfsson HI, Akhshi P, Tieleman DP, Marrink SJ. Martini coarse-grained force field: extension to DNA. J Chem Theory Comput. 2015;11:3932–45.CrossRefGoogle Scholar
  95. van Duin ACT, Dasgupta S, Lorant F, Goddard WA. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105:9396–409.CrossRefGoogle Scholar
  96. van Duin ACT, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA. ReaxFFSiO reactive force field for silicon and silicon oxide systems. J Phys Chem A. 2003;107:3803–11.CrossRefGoogle Scholar
  97. van Gunsteren WF, Mark AE. Validation of molecular dynamics simulation. J Chem Phys. 1998;108:6109–16.CrossRefGoogle Scholar
  98. van Krevelen DW, te Nijenhuis K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. 4th ed. Philadelphia: Elsevier; 2009.Google Scholar
  99. Van Speybroeck V, Hemelsoet K, Joos L, Waroquier M, Bell RG, Catlow CRA. Advances in theory and their application within the field of zeolite chemistry. Chem Soc Rev. 2015;44:7044–111.CrossRefGoogle Scholar
  100. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2009;31:671–90.Google Scholar
  101. Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys Rev. 1967;159:98–103.CrossRefGoogle Scholar
  102. Wang Z, Lv Q, Chen S, Li C, Sun S, Hu S. Glass transition investigations on highly crosslinked epoxy resins by molecular dynamics simulations. Mol Simul. 2015;41:1515–27.CrossRefGoogle Scholar
  103. Wen J, Wilkes GL. Organic/inorganic hybrid network materials by the sol- gel approach. Chem Mater. 1996;8:1667–81.CrossRefGoogle Scholar
  104. White CE, Provis JL, Kearley GJ, Riley DP, van Deventer JSJ. Density functional modelling of silicate and aluminosilicate dimerisation solution chemistry. Dalton Trans. 2011;40:1348–55.CrossRefGoogle Scholar
  105. Wu C, Xu W. Atomistic molecular modelling of crosslinked epoxy resin. Polymer. 2006;47:6004–9.CrossRefGoogle Scholar
  106. Xin D, Han Q. Study on thermomechanical properties of cross-linked epoxy resin. Mol Simul. 2015;41:1081–5.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thomas S. Asche
    • 1
  • Mirja Duderstaedt
    • 1
  • Peter Behrens
    • 1
  • Andreas M. Schneider
    • 1
    Email author
  1. 1.Institut für Anorganische ChemieLeibniz Universität HannoverHannoverGermany

Personalised recommendations