Non-Front-Fanged Colubroid Snakes

  • Scott A. WeinsteinEmail author
Reference work entry


Non-front-fanged colubroid snakes (NFFC; formerly and artificially taxonomically assembled as “colubrids”) comprise the majority of extant ophidian species. Although the medical risks of bites by a handful of species have been documented, the majority of these snakes have oral products (Duvernoy’s secretions, or venoms) with unknown biomedical properties and their potential for causing harm in humans is unknown. Several genera of NFFC (the African boomslang, Dispholidus typus; the African twig, bird or vine snakes, Thelotornis spp.; the Japanese tiger keelback or Yamakagashi, Rhabdophis tigrinus; the red-necked keelback, R. subminiatus, and the rare Sri Lankan endemic, the blossom krait, Balanophis ceylonenesis) have inflicted life-threatening or fatal bites (termed, Hazard Level 1), while envenoming by several other NFFC species (e.g. Lichtenstein’s green racer, Philodryas olfersii; the Montpellier snake, Malpolon monspessulanus, and, possibly, the brown tree snake, Boiga irregularis) have caused uncommon systemic envenoming that were not life-threatening (Hazard Level 2). Several other NFFC taxa occasionally inflict bites that cause mild-moderate local envenoming that may resemble that caused by a crotaline viperid species (Hazard Level 2/3). The majority of documented bites from NFFC have either caused only mild local effects with limited medical significance, and bites from some taxa only occasionally cause more locally progressive effects (Hazard Level 3), while most are medically insignificant (Hazard Level 4). However, only a relative handful of bites or envenoming by NFFC taxa have been formally medically reviewed and documented, and thus the medical risks of the majority of NFFC species remain unestablished. Antivenom is available for serious envenoming by D. typus and R. tigrinus; the latter antivenom is probably also effective for treatment of envenoming by R. subminiatus and possibly B. ceylonensis. Medical management of most other species consists of supportive treatment, meticulous wound care and pain management. The controversial use of replacement therapy is discussed, and recommendations are detailed for management of each Hazard Level group. Future qualified documentation of NFFC bites and envenoming may facilitate improved risk assessments of a greater array of NFFC species.


Colubrid Elapidae Colubroidea Front-fanged colubroids Vipers Cobras Mambas Coral snakes Sea snakes Naja Bungarus Kraits Bothrops Fer-de-lance Duvernoy’s gland Boomslangs Hazard index Coagulopathy Thrombocytopenia Hemolysis Metalloproteases Antivenom Neostigmine Atropine Garter snakes Cottonmouth Water moccasin Racers Cryoprecipitate Platelets Fibrinogen Fresh frozen plasma 



I gratefully acknowledge the generous contribution of images by Prof. David A. Warrell (Nuffield Department of Clinical Medicine, Oxford University), Prof. Idraneil Das (Institute of Biodiversity and Environmental Conservation, UNIMAS, Kota Samarahan, Sarawak), Prof. Julian White (Department of Toxinology, Women’s and Children’s Hospital, Adelaide), Dr. Dan Keyler (SafetyCall International and the Department of Experimental and Clinical Pharmacology, University of Minnesota), Dr. Ahmad Khalil Ismail (Department of Emergency Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur), Dr. Mohd Shukruddeen Salleh (Emergency and Trauma Department, Hospital Kuala Krai, Kuala Krai, Kelantan), Dr. Taksa Vasaruchapong (Thai Red Cross, Bangkok), Dr. Pedro H. Bernardo (Department of Ecology and Evolutionary Biology, University of Toronto, and the Department of Natural History, Royal Ontario Museum), Dr. Fábio Bucaretchi (Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, and Centro de Controle de Intoxicações, Faculdade de Ciências Médicas, Hospital das Clínicas, UNICAMP), Dr. Eng Wah Teo (Department of Emergency Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur), Dr. Gordon Rodda (US Geographical Survey, Washington, DC, and Fort Collins Science Center, Fort Collins), Rowland Griffin (Project Chicchan, c/o Las Guacamayas Biological Station, Laguna del Tigre National Park, Flores, Guatemala), Dr. Barney Oldfield (Minneapolis), David P. Richards (School of Life Sciences, University of Nottingham), and Christopher E. Smith (Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota).


  1. 1.
    Weinstein SA, White J, Keyler DE, Warrell DA. Non-front-fanged colubroid snakes: a current evidence-based analysis of medical significance. Toxicon. 2013;69:103–13.CrossRefPubMedGoogle Scholar
  2. 2.
    Pyron RA, Burbrink FT, Colli GR, Montes De Oca AN, Vitt LJ, Kuczynski CA, Wiens JJ. The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol Phylogenet Evol. 2011;58:329–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Weinstein SA, Warrell DA, White J, Keyler DE. Venomous bites from non-venomous snakes: a critical analysis of risk and management of “colubrid” snake bites. London: Elsevier Science; 2011.Google Scholar
  4. 4.
    Pyron RA, Burbrink FT. Extinction, ecological opportunity, and the origins of global snake diversity. Evolution. 2012;66:163–78.CrossRefPubMedGoogle Scholar
  5. 5.
    Vidal N, Delmas AS, David P, Cruaud C, Couloux A, Hedges SB. The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. C R Biol. 2007;330:182–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Vidal N, Dewynter M, Gower DJ. Dissecting the major American snake radiation: a molecular phylogeny of the Dipsadidae Bonaparte (Serpentes, Caenophidia). C R Biol. 2010;333:48–55.CrossRefPubMedGoogle Scholar
  7. 7.
    Zaher H, Grazziotin GF, Cadle JE, Murphy RW, Moura-Leite JC, Bonatto SL. Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American Xenodontines: a revised classification and descriptions of new taxa. Papeis Avulsos de Zool. 2009;49:115–52.CrossRefGoogle Scholar
  8. 8.
    Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ. Estimating the global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5:e218. doi:10.1371/journal.pmed.0050218.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chippaux JP. Snake bites: appraisal of the global situation. Bull World Health Organ. 1998;76:515–24.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Weinstein SA, Kardong KV. Properties of Duvernoy’s secretions from opisthoglyphous and aglyphous colubrid snakes: a critical review. Toxicon. 1994;32:1161–85.CrossRefPubMedGoogle Scholar
  11. 11.
    Taub AM. Comparative histological studies on Duvernoy’s gland of colubrid snakes. Bull Am Mus Nat Hist. 1967;138:1–50.Google Scholar
  12. 12.
    Gans C. Reptilian venoms: some evolutionary considerations. In: Gans C, editor. Biology of the reptilia, vol. 8. New York: Academic; 1978. p. 1–39.Google Scholar
  13. 13.
    Rosenberg HI, Bdolah A, Kochva E. Lethal factors and enzymes in the secretion from Duvernoy’s gland of three colubrid snakes. J Exp Zool. 1985;223:5.CrossRefGoogle Scholar
  14. 14.
    Minton SA, Weinstein SA. Colubrid snake venoms: immunological and electrophoretic patterns. Copeia. 1987;1987:993–1000.CrossRefGoogle Scholar
  15. 15.
    Saviola AJ, Peichoto ME, Mackessy SP. Rear-fanged snake venoms: an untapped source of novel compounds and potential drug leads. Toxin Rev. 2014;33:185–201.CrossRefGoogle Scholar
  16. 16.
    Fry BG, Scheib H, van Weerd L, Young BA, McNaughtan J, Ramjan SFR, Poelmann RE, Norman JA. Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes. Mol Cell Proteomics. 2008;7:215–46.CrossRefPubMedGoogle Scholar
  17. 17.
    Kardong KV. Snake toxins and venoms: an evolutionary perspective. Herpetologica. 1996;52:36–46.Google Scholar
  18. 18.
    Weinstein SA, Smith TL, Kardong KV. Reptile venom glands: form, function, and future. In: Mackessy SP, editor. Handbook of reptile venoms and toxins. Boca Raton: CRC/Taylor Francis; 2010. p. 65–91.Google Scholar
  19. 19.
    Kardong KV. Presentation at Venom Week III. Albuquerque; 2009.Google Scholar
  20. 20.
    OmPraba G, Chapeaurouge A, Doley R, Devi KR, Padmanaban P, Venkatraman C, Velmurugan D, Lin Q, Kini RM. Identification of a novel family of snake venom proteins Veficolins from Cerberus rynchops using a venom gland transcriptomics and proteomics approach. J Proteome Res. 2010;9:1882–93.CrossRefPubMedGoogle Scholar
  21. 21.
    Ching AT, Rocha MM, Paes Leme AF, Pimenta DC, de Fátima D, Furtado M, Serrano SM, Ho PL, Junqueira-de-Azevedo IL. Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy’s (venom) gland transcriptome. FEBS Lett. 2006;580:4417–22. (including the erratum: FEBS Lett. 2006;580:5122–23).CrossRefPubMedGoogle Scholar
  22. 22.
    Weinstein SA. Snake venoms: a brief treatise on etymology, origins of terminology, and definitions. Toxicon. 2015;103:188–95.CrossRefPubMedGoogle Scholar
  23. 23.
    Kardong KV. Replies to Fry et al. (Toxicon. 2012;60:434–48). Part B. Properties and biological roles of squamate oral products: the “venomous lifestyle” and preadaptation. Toxicon. 2012;60:964–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Fry BG, Casewell NR, Wüster W, Vidal N, Young B, Jackson NWJ. The structural and functional diversification of the Toxicofera reptile venom system. Toxicon. 2012;60:434–48.CrossRefPubMedGoogle Scholar
  25. 25.
    Jackson TNW, Casewell NR, Fry BG. Response to, “Replies to Fry et al. (Toxicon. 2012;60:434–448). Part A. Analyses of squamate reptile oral glands and their products: a call for caution in formal assignment of terminology designating biological function”. Toxicon. 2013;64:106–12. Further replied by Weinstein SA, White J, Keyler DE and Kardong KV. Response to Jackson et al. Toxicon. 2013;64:116–27.CrossRefPubMedGoogle Scholar
  26. 26.
    Weinstein SA, Keyler D. Local envenoming by the Western hognose snake, Heterodon nasicus: a case report and review of medically significant Heterodon bites. Toxicon. 2009;54:354–60.CrossRefPubMedGoogle Scholar
  27. 27.
    Weinstein SA, White J, Westerström A, Warrell DA. Anecdote vs. substantiated fact: the problem of unverified reports in the toxinological and herpetological literature describing non-front-fanged colubroid (“colubrid”) snakebites. Herpetol Rev. 2012;44:23–9.Google Scholar
  28. 28.
    Minton SA. Venomous bites by nonvenomous snakes: an annotated bibliography of colubrid envenomation. J Wildern Med. 1990;1:119–27.CrossRefGoogle Scholar
  29. 29.
    Warrell DA. Snakebites in Central and South America: epidemiology, clinical features, and clinical management. In: Campbell JA, Lamar WW, editors. The venomous reptiles of the Western Hemisphere, vol. 2. Ithaca: Comstock; 2004. p. 709–61.Google Scholar
  30. 30.
    Glenn JL, Porras LW, Nohavec RD, Straight RC. Analysis of the Duvernoy’s gland and oral secretions of Hydrodynastes gigas (Dumeril, Bibron, and Dumeril) (Reptilia: Serpentes). In: Strimple PD, Strimple JL, editors. Contributions in Herpetology. Cincinnati: Cincinnati Museum of Natural History; 1992. p. 19–26.Google Scholar
  31. 31.
    Russell FE. Snake venom poisoning. Philadelphia: Lippincott; 1980.Google Scholar
  32. 32.
    Minton SA. Venom diseases. Springfield: Thomas Publishing; 1974.Google Scholar
  33. 33.
    Weinstein SA, DeWitt C, Smith LA. Variation in venom-neutralizing capacities of serum from snakes of the colubrid genus Lampropeltis. J Herpetol. 1992;26:452–61.CrossRefGoogle Scholar
  34. 34.
    Pawlak J, Kini RM. Unique gene organization of colubrid three-finger toxins: complete cDNA and gene sequences of denmotoxin, a bird-specific toxin from colubrid snake Boiga dendrophila (Mangrove Catsnake). Biochimie. 2008;90:868–77.CrossRefPubMedGoogle Scholar
  35. 35.
    Pawlak J, Mackessy SP, Fry BG, Bhatia M, Mourier G, Fruchart-Gaillard C, Servent D, Menez R, Stura E, Menez A, Kini RM. Denmotoxin, a three-finger toxin from the colubrid snake, Boiga dendrophila mangrove catsnake with bird-specific activity. J Biol Chem. 2006;281:29030–41.CrossRefPubMedGoogle Scholar
  36. 36.
    Mackessy SP, Sixberry NM, Heyborne WH, Fritts T. Venom of the brown treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity. Toxicon. 2006;47:537–48.CrossRefPubMedGoogle Scholar
  37. 37.
    Campbell JA, Lamar WW, editors. The venomous reptiles of the Western Hemisphere, vol. 2. Ithaca: Comstock; 2004.Google Scholar
  38. 38.
    Fernando WKBKM, Kularatne SAM, Wathudura SPK, de Silva A, Mori A. First reported case of systemic envenoming by the Sri Lankan keelback (Balanophis ceylonensis). Toxicon. 2015;93:20–3.CrossRefPubMedGoogle Scholar
  39. 39.
    Reimers AR, Weber M, Müller UR. Are anaphylactic reactions to snake bites immunoglobulin E-mediated? Clin Exp Allergy. 2000;30:276–82.CrossRefPubMedGoogle Scholar
  40. 40.
    Chen YC, Yen DH, Chen YW, Huang MS, Huang CI, Chen MH. Toxin ophthalmia caused by nuchal gland secretion of the Taiwan tiger keelback (Rhabdophis tigrinus formosanus). J Formos Med Assoc. 2014;113:750–3.CrossRefPubMedGoogle Scholar
  41. 41.
    Chu ER, Weinstein SA, White J, Warrell DA. Venom ophthalmia caused by venoms of spitting elapids and other snakes: report of ten cases with review of epidemiology, clinical features, pathophysiology, and management. Toxicon. 2010;56:259–72.CrossRefPubMedGoogle Scholar
  42. 42.
    Pommier P, de Haro L. Envenomation by Montpellier snake (Malpolon monspessulanus) with cranial nerve disturbances. Toxicon. 2007;50:868–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Weinstein SA, Griffin R, Ismail AK. Non-front-fanged colubroid (“colubrid”) snakebites: three cases of local envenoming by the mangrove or ringed cat-eyed snake (Boiga dendrophila; Colubridae, Colubrinae), the Western beaked snake (Rhamphiophis oxyrhynchus; Lamprophiidae, Psammophinae) and the rain forest cat-eyed snake (Leptodeira frenata; Dipsadidae). Clin Toxicol. 2014;52:277–82.CrossRefGoogle Scholar
  44. 44.
    Keyler DE, Richards DP, Warrell DA, Weinstein SA. Local envenomation from the bite of a juvenile false water cobra (Hydrodynastes gigas; Dipsadidae). Toxicon. 2015;111:58–61.CrossRefPubMedGoogle Scholar
  45. 45.
    Weinstein SA, Dart RC, Staples A, White J. Enveomations: an overview of clinical toxinology for the primary care physician. Amer Fam Phys. 2009;80:793–802.Google Scholar
  46. 46.
    Kanaan NC, Ray J, Stewart M, Russell KW, Fuller M, Bush SP, Caravati EM, Cardwell MD, Norris RL, Weinstein SA. Wilderness medical society practice guidelines for the treatment of pitviper envenomations in the United States and Canada. Wilderness Environ Med. 2015;26:472–87.CrossRefPubMedGoogle Scholar
  47. 47.
    Barata M, Perera A, Harris DJ, van der Meijden A, Carranza S, Ceacero F, García-Muñoz E, Gonçalves D, Henriques S, Jorge F, Marshall JC, Pedrajas L, Sousa P. New observations of amphibians and reptiles in Morocco, with a special emphasis on the eastern region. Herpetol Bull. 2011;116:4–14.Google Scholar
  48. 48.
    Largen MJ, Spawls S. Amphibians and reptiles of Ethiopia and Eritrea. Frankfurt: Edition Chimaira; 2010.Google Scholar
  49. 49.
    Anderson GD. Pregnancy-induced changes in pharmacokinetics: a mechanistic-based approach. Clin Pharmacokinet. 2005;44:989–1008.CrossRefPubMedGoogle Scholar
  50. 50.
    Ho M, Silamut K, White NJ, Karbwang J, Looareesuwan S, Phillips RE, Warrell DA. Pharmacokinetics of three commercial antivenoms in patients envenomed by the Malayan pit viper, Calloselasma rhodostoma, in Thailand. Am J Trop Med Hyg. 1990;42:260–6.CrossRefPubMedGoogle Scholar
  51. 51.
    White J. Management of brown snake envenoming. Crit Care Resusc. 2002;4:81–6.Google Scholar
  52. 52.
    White J. Envenomation: prevention and treatment in Australia. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC/Taylor and Francis; 2010. p. 423–52.Google Scholar
  53. 53.
    Weinstein SA, personal observations.Google Scholar
  54. 54.
    Burgess JL, Dart RC. Snake venom coagulopathy: use and abuse of blood products in the treatment of pit viper envenomation. Ann Emerg Med. 1991;20:795–801.CrossRefPubMedGoogle Scholar
  55. 55.
    Isbister GI, Dufall SB, Brown SG. Failure of antivenom to improve recovery in Australian snakebite coagulopathy. QJM. 2009;102:563–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Slichter SJ. New thoughts on the correct dosing of prophylactic platelet transfusions to prevent bleeding. Curr Opin Hematol. 2011;18:427–35.CrossRefPubMedGoogle Scholar
  57. 57.
    Hunt BJ. Bleeding and coagulopathies in critical care. N Engl J Med. 2014;370:847–59.CrossRefPubMedGoogle Scholar
  58. 58.
    Mebs D, Scharrer I, Stille W, Hauk H. A fatal case of snakebite due to Thelotornis kirtlandii. Toxins: animal, plant and microbial. Proceedings of the Fifth Annual Symposium; 1978; Oxford: Pergamon Press. p. 477–79.Google Scholar
  59. 59.
    Coca SG. Long-term outcomes of acute kidney injury. Curr Opin Nephrol Hypertens. 2010;19:266–72.CrossRefPubMedGoogle Scholar
  60. 60.
    Bihorac A. Acute kidney injury in the surgery patient: recognition and attribution. Nephron. 2015;131:118–22.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Pawlak J, Mackessy SP, Sixberry NM, Stura EA, Le Du MH, Menez R, Foo CS, Menez A, Nirthanan S, Kini RM. Irditoxin, a novel covalently linked heterodimeric three-finger toxin with high taxon-specific neurotoxicity. FASEB J. 2009;23:534–45.CrossRefPubMedGoogle Scholar
  62. 62.
    Weinstein SA, Chiszar D, Bell RC, Smith LA. 1991. Lethal potency and fractionation of Duvernoy’s secretion from the brown tree snake, Boiga irregularis. Toxicon. 1991;29:401–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Fry BG, Wüster W, Ryan Ramjan SF, Jackson T, Martelli P, Kini RM. Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications. Rapid Commun Mass Spectrom. 2003;17:2047–62.CrossRefPubMedGoogle Scholar
  64. 64.
    Guillin MC, Bezeand A, Ménaché D. The mechanism of activation of human prothombin by an activator isolated from Dispholidus typus venom. Biochem Biophys Acta. 1978;537:160–5.PubMedGoogle Scholar
  65. 65.
    Hiestand PC, Hiestand RR. Dispholidus typus (boomslang) snake venom: purification and properties of the coagulant principle. Toxicon. 1979;17:489–98.CrossRefPubMedGoogle Scholar
  66. 66.
    Kamiguti AS, Theakston RD, Sherman N, Fox JW. Mass spectrophotometric evidence for P-III/P-IV metalloproteinases in the venom of the Boomslang (Dispholidus typus). Toxicon. 2000;38:1613–20.CrossRefPubMedGoogle Scholar
  67. 67.
    de Lula Salles RO, Weber LN, Silva-Soares T. Reptiles, Squamata, Parque Natural Municipal da Taquara, municipality of Duque de Caxias, state of Rio de Janeiro, Southeastern Brazil. Check List. 2010;6:280–6.CrossRefGoogle Scholar
  68. 68.
    Kornalik F, Táborská E, Mebs D. Pharmacological and biochemical properties of a venom gland extract from the snake Thelotornis kirtlandi. Toxicon. 1978;16:535–42.CrossRefPubMedGoogle Scholar
  69. 69.
    Huang P, Mackessy SP. Biochemical characterization of phospholipase A2 (trimorphin) from the venom of the Sonoran Lyre Snake Trimorphodon biscutatus lambda (family Colubridae). Toxicon. 2004;44:27–36.CrossRefPubMedGoogle Scholar
  70. 70.
    Weldon CL, Mackessy SP. Alsophinase, a new P-III metalloproteinase with α-fibrinogenolytic and hemorrhagic activity from the venom of the rear-fanged Puerto Rican Racer, Alsophis portoricensis (Serpentes: Dipsadidae). Biochimie. 2012;94:1189–98.CrossRefPubMedGoogle Scholar
  71. 71.
    Estrella A, Sánchez EE, Galán JA, Tao WA, Guerrero B, Navarrete LF, Rodríguez-Acosta A. Characterization of toxins from the broad-banded water snake Helicops angulatus (Linnaeus, 1758): isolation of a cysteine-rich secretory protein, Helicopsin. Arch Toxicol. 2011;85:305–13.CrossRefPubMedGoogle Scholar
  72. 72.
    Prado-Franceschi J, Hyslop S, Cogo JC, Andrade AL, Assakura MT, Reichl AP, Cruz-Höfling MA, Rodrigues-Simioni L. Characterization of a myotoxin from the Duvernoy’s gland secretion of the xenodontine colubrid Philodryas olfersii (green snake): effects on striated muscle and the neuromuscular junction. Toxicon. 1998;36:1407–21.CrossRefPubMedGoogle Scholar
  73. 73.
    Peichoto ME, Teibler P, Mackessy SP, Leiva L, Acosta O, Gonçalves LR, Tanaka-Azevedo AM, Santoro ML. Purification and characterization of patagonfibrase, a metalloproteinase showing alpha-fibrinogenolytic and hemorrhagic activities, from Philodryas patagoniensis snake venom. Biochim Biophys Acta. 1770;2007:810–9.Google Scholar
  74. 74.
    Komori K, Konishi M, Maruta Y, Toriba M, Sakai A, Matsuda A, Hori T, Nakatani M, Minamino N, Akizawa T. Characterization of a novel metalloproteinase in Duvernoy’s gland of Rhabdophis tigrinus tigrinus. J Toxicol Sci. 2006;31:157–68.CrossRefPubMedGoogle Scholar
  75. 75.
    Lumsden NG, Banerjee Y, Kini RM, Kuruppu S, Hodgson WC. Isolation and characterization of rufoxin, a novel protein exhibiting neurotoxicity from venom of the psammophiine, Rhamphiophis oxyrhynchus (Rufous beaked snake). Neuropharmacol. 2007;52:1065–70.CrossRefGoogle Scholar
  76. 75.
    Weinstein SA, Keyler DE, White J. Replies to Fry et al. (Toxicon. 2012;60:434–448). Part A. Analyses of squamate reptile oral venom glands and their products: a call for caution in formal assignment of terminology designating biological function. Toxicon. 2012;60:954–63.CrossRefPubMedGoogle Scholar

Copyright information

© Crown Copyright 2017

Authors and Affiliations

  1. 1.Clinical and Research Toxinologist/Family PhysicianWomen’s and Children’s HospitalAdelaideAustralia

Personalised recommendations