Marine Vertebrates, Cnidarians, and Mollusks

  • L. Keith FrenchEmail author
  • B. Zane Horowitz
Reference work entry


Jellyfish belong to the phylum Cnidaria (Greek derived from ‘nettle’) and are mostly free-swimming marine animals that may have an umbrella-shaped bell with varying length tentacles. The pulsations of the bell are relied on as their mode of locomotion, while the tentacles are typically used for capturing prey. Jellyfish have a worldwide distribution, occupying every ocean and some freshwater lakes. The phylum is comprised of several distinct life forms and four important classes of jellyfish: Cubozoa, Hydroza, Anthozoa, and Scyphozoa. The defining feature of Cnidaria is the cnidocyte, and the tentacles of most jellyfish are lined with thousands of them (Figs. 1 and 2). Each cnidocyte contains a harpoon-like organelle known as a cnida or cnidocyst. On the external surface of the cnidocyte is a cnidocil which, when activated by pressure, osmotic, or chemical changes, acts like a trigger, releasing the previously coiled harpoon. Once forcefully expelled, a process that takes microseconds, the harpoon is capable of penetrating human tissue. Venom is forced out of the cnidocyte under pressure through the epidermis and upper dermis and, particularly if dermal capillaries are inoculated directly, can enter the systemic circulation. It is sometimes stated that these may be inadvertently accelerated by the rubbing or shaking of a startled human victim, but there is no reliable evidence that this actually occurs.


Jellyfish Cnidarian Box jellyfish Chironex fleckeri Malo kingi Carukia barnesi Physalia physalis Irukandji syndrome Hydrozoa Stingrays Scorpaenidae Stonefish Lionfish Pterosis Zebrafish Catfish Amazonian parasitic catfish Weeverfish Starfish Sea cucumbers Octopuses Blue-ringed octopus Cone snails Sea urchins 


  1. 1.
    National Oceanic and Atmospheric Administration.
  2. 2.
    Tibbalis J, Li R, Tibbalis HA, Gershwin L, Winkei KD. Australian carybdeid jellyfish causing the “Irukandji syndrome”. Toxicon. 2012;59(6):617–25.CrossRefGoogle Scholar
  3. 3.
    Barnes JH. Cause and effect in Irukandji Stingings. Med J Aust. 1964;1:897–904.PubMedGoogle Scholar
  4. 4.
    Hughes RJA, Angus JA, Winkel KD, Wright CE. A pharmacological investigation of the venom extract of the Australian box jellyfish, Chironex fleckeri, in cardiac and vascular tissues. Toxicol Lett. 2012;209:11–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Tiballis J, Williams D, Sutherland SK. The effects of antivenom and verapamil on the heamodynamic actions of Chironex fleckeri (box jellyfish) venom. Anaesth Intensive Care. 1998;26:40–5.Google Scholar
  6. 6.
    Brinkman D, Burnell J. Identification, cloning and sequencing of two major venom proteins from the box jellyfish, Chironex fleckeri. Toxicon. 2007;50(6):850–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Cuypers E, Yanagihara A, Karlsson E, Tytgat J. Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels. FEBS Lett. 2006;183:631–6.Google Scholar
  8. 8.
    Endean R. Separation of two myotoxins from nematocysts of the box jellyfish (Chironex fleckeri). Toxicon. 1987;25(5):483–92.PubMedCrossRefGoogle Scholar
  9. 9.
    Winkel KD, Tibbals J, Molenaar P, Lambert G, Coles P, Ross-Smith M, Wiltshire C, Fenner PJ, Gershwin L, Hawdon GM, Wright CE, Angus JA. Cardiovascular actions of the venom from the Irukandji (Carukia barnesi) jellyfish: effects in human, rat, and Guinea-pig tissues in vitro and in pigs in vivo. Clin Exp Pharmacol Physiol. 2005;32:777–88.PubMedCrossRefGoogle Scholar
  10. 10.
    Sakanashi M, Matsuzaki T, Nakasone J, Koyama T, Sakanashi M, Kukita I, Sakanashi M. Effects of diltiazem on in vitro cardiovascular actions of crude venom obtained from Okinawan box-jellyfish (Habu-kurage), Chiropsalmus quadrigatus. Anaesth Intens Care. 2002;30:570–7.Google Scholar
  11. 11.
    Koyama T, Noguchi K, Matsuzaki T, Sakanashi M, Nakasone J, Miyagi K, Sakanashi M, Sakanashi M. Haemodynamic effects of the crude venom from nematocysts of the box-jellyfish Chiropsalmus quadrigatus (Habu-kurage) in anaesthetized rabbits. Toxicon. 2003;41:621–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Noguchi K, Sakanashi M, Matsuzaki T, Nakasone J, Sakanashi M, Koyama T, Hamadate N, Sakanashi M. Cardiovascular effects and lethality of venom from nematocytes of the box-jellyfish Chriopsalmus quadrigatus (Habu-kurage) in anaesthetized rats. Toxicon. 2005;45.Google Scholar
  13. 13.
    Tamkun MM, Hessinger DA. Isolation and partial characterization of a hemolytic and toxic protein from the nematocyst venom of the Portuguese man-of-war, Physalia physalis. BBA. 1981;667(1):87–98.PubMedGoogle Scholar
  14. 14.
    Bhakdi S, Tranum-Jensen J. Damage to cell membranes by pore-forming bacterial cytolysins. Prog Allergy. 1988;40:1–43.PubMedGoogle Scholar
  15. 15.
    Edwards L, Whitter E, Hessinger DA. Apparent membrane pore-formation by Portuguese Man-of-War (Physalia physalis) venom in cultured cells. Toxicon. 2002;40:1299–305.PubMedCrossRefGoogle Scholar
  16. 16.
    Hastings SG, Larsen JB, Lane CE. Effects of nematocyst toxin of Physalia physalis (Portuguese Man-of-War) on the canine cardiovascular system. Exp Biol Med. 1967;125(1):41–5.CrossRefGoogle Scholar
  17. 17.
    Tibballs J. Australian venomous jellyfish, envenomation syndromes, toxins and therapy. Toxicon. 2006;48:830–59.PubMedCrossRefGoogle Scholar
  18. 18.
    O’Reilly GM, Isbister GK, Lawrie PM, Treston GT, Currie BJ. Prospective study of jellyfish stings from tropical Australia, including the major box jellyfish Chironex fleckeri. Med J Aust. 2001;175(11–12):652–5.PubMedGoogle Scholar
  19. 19.
    Barnes JH. Studies on three venomous cubomedusae. In: Ress WJ, editor. The Cnidaria and their evolution. New York: Academic; 1966.Google Scholar
  20. 20.
    Little M, Mulcahy RF. A year’s experience of Irukandji envenomation in far north Queensland. Med J Aust. 1998;169:638–41.PubMedGoogle Scholar
  21. 21.
    Huynh TT, Seymour J, Pereira P, Mulchany R, Cullen P, Carrette T, Little M. Severity of Irukandji syndrome and nematocyst identification from skin scrappings. Med J Aust. 2003;178:38–41.PubMedGoogle Scholar
  22. 22.
    Pereira P, Barry J, Corkeron M, Keir P, Little M, Seymour J. Intracranial hemorrhage and death after envenoming by the jellyfish Carukia barnesi. Clin Tox. 2010;48:390–2.CrossRefGoogle Scholar
  23. 23.
    Nakamoto M, Uezato H. Stings of box-jellyfish and sea anemones. Jpn J Clin Dermatol. 1998;52 Suppl 5:29–53.Google Scholar
  24. 24.
    Haddad V, Virga R, Bechara A, Da Silveira FL, Morandini C. An outbreak of Portuguese man-of-war (Physalia physalis – Linnaeus, 1758) envenoming in Southeastern Brazil. Rev Soc Bras Med Trop. 2013;46(5):641–4.CrossRefGoogle Scholar
  25. 25.
    Guess HA, Saviteer PL, Morris CR. Hemolysis and acute renal failure following a Portuguese man-of-war sting. Pediatrics. 1980;70:979–81.Google Scholar
  26. 26.
    Stein RM, Marraccini JV, Rothschild NE, Burnett JW. Fatal Portuguese Man-O’-War (Physalia physalis) envenomation. Ann Emerg Med. 1989;3:131–4.Google Scholar
  27. 27.
    Auerbach PS, Hays JT. Erythema nodosum following a jellyfish sting. J Emerg Med. 1987;5(6):487–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Czarnetzki BM, Thiele T, Rosenbach T. Evidence for leukotrienes in animal venoms. J Allergy Clin Immunol. 1990;85(2):505–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Burnett JW, Hepper KP, Aurelian L. Lymphokine activity in coelenterate envenomation. Toxicon. 1986;24(1):104–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Pereira PL, Carrette T, Cullen P. Pressure immobilization bandages in first-aid treatment of jellyfish envenomation: current recommendations reconsidered. Med J Aust. 2000;173:650–2.PubMedGoogle Scholar
  31. 31.
    Hartwick R, Callanan V, Williamson J. Disarming the box jellyfish, nematocyst inhibition in Chironex fleckeri. Med J Aust. 1980;1:15–20.PubMedGoogle Scholar
  32. 32.
    Turner B, Sullivan P. Disarming the bluebottle: treatment of Physalia envenomation. Med J Aust. 1980;2:394–5.PubMedGoogle Scholar
  33. 33.
    Birsa LM, Verity PG, Lee RF. Evaluation of the effects of various chemicals on discharge of and pain caused by jellyfish nematocysts. Comp Biochem Physol C Toxicol Pharmacol. 2010;151:426–30.CrossRefGoogle Scholar
  34. 34.
    Ward NT, Darracq MA, Tomaszewski C, Clark RF. Evidence-based treatment of jellyfish stings in North America and Hawaii. Ann Emerg Med. 2012;60(4):399–414.PubMedCrossRefGoogle Scholar
  35. 35.
    Andreosso A, Smout MJ, Seymour E. Dose and time dependence of box jellyfish antivenom. J Venomous Anim Toxins Incl Trop Dis. 2014; art no.34, 20:1–5.Google Scholar
  36. 36.
    Winter KL, Isbister GK, Jacoby T, Seymour JE, Hodgson WC. An in vivo comparison of the efficacy of CSL box jellyfish antivenom with antibodies raised against nematocyst derived-Chironex fleckeri venom. Toxicol Lett. 2009;187(2):94–8.Google Scholar
  37. 37.
    Burnett JW, Calton GJ. Response of the box-jellyfish (Chironex fleckeri) cardiotoxin to intravenous administration of verapamil. Med J Aust. 1983;2:192–4.PubMedGoogle Scholar
  38. 38.
    Burnett JW, Othman IB, Endean R, et al. Verapamil potentiation of Chironex (box-jellyfish) antivenom. Toxicon. 1990;28:242–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Corkeron M, Pereira P, Makrocanis C. Early experience with magnesium administration in Irukandji syndrome. Anaesth Intens Care. 2004;32:666–9.Google Scholar
  40. 40.
    McCullagh N, Pereira P, Cullen P, Mulcahy R, Bonin R, Little M, Gray S, Seymour J. Randomized trial of magnesium in the treatment of Irukandji syndrome. Emerg Med Australas. 2012;24(5):560–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Schwartz S, Meinking T. Venomous marine animals of Florida: morphology, behavior, health hazards. J Fla Med Assoc. 1997;84:433–40.PubMedGoogle Scholar
  42. 42.
    Auerbach PS. Wilderness medicine: management of wilderness and environmental emergencies. St. Louis: Mosby; 1995.Google Scholar
  43. 43.
    Wittle LW, Middlebrook RE, Lane CE. Isolation and partial purification of a toxin from Millepora alcicornis. Toxicon. 1971;9:333–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Middlebrook RE, Wittle LW, Scura ED, Lane CE. Isolation and purification of a toxin from Millepora dichotoma. Toxicon. 1971;9:333–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Iguchi A, Iwanaga S, Nagai H. Isolation and characterization of a novel protein from fire coral. Biochem Biophys Res Commun. 2008;36:107–12.CrossRefGoogle Scholar
  46. 46.
    Ibarra-Alvarado C, Alejandaro Garcia J, Aguilar MB, Rojas A, Falcon A, Heimer de la Cotera EP. Biochemical and pharmacological characterization of toxins obtained from the fire coral Millepora complanata. Comp Biochem Physiol C Toxicol Pharmacol. 2007;146(4):511–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Radwan FF, Aboul-Dahab HM. Milleporin-1, a new phospholipase A2 active protein from the fire coral Millepora platyphylla nematocysts. Comp Biochem Physiol C Toxicol Pharmacol. 2004;139(4):267–72.PubMedCrossRefGoogle Scholar
  48. 48.
    Addy JH. Red Sea coral contact dermatitis. Int J Dermatol. 1991;30(4):27–3.CrossRefGoogle Scholar
  49. 49.
    Prasad GV, Vincent L, Hamilton R, Lim K. Minimal change disease in association with fire coral (Millepora species exposure). Am J Kidney Dis. 2006;47(1):e15–16.PubMedCrossRefGoogle Scholar
  50. 50.
    Sagi A, Rosenber L, Ben-Meir P, Hauben DJ. The fire coral (Millepora dichotoma) as a cause of burns: a case report. Burns. 1987;13(4):325–6.CrossRefGoogle Scholar
  51. 51.
    Rifkin JF, Fenner PJ, Williamson JAH. First aid treatment of the sting from the hydroid Lytocarpus philippinus: the structure of, and in vitro, discharge experiments with its nematocysts. J Wilderness Med. 1993;4:252–60.CrossRefGoogle Scholar
  52. 52.
    Diaz JH. The evaluation, management, and prevention of stingray injuries in travelers. J Travel Med. 2008;15(2):102–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Liggins JB. Death due to a stingray barb piercing the heart: a New Zealand case from 1939, an unusual bathing fatality. N Z Med J. 2006;119(1241):53–5.Google Scholar
  54. 54.
    Fenner PJ, Williamson JA, Skinner RA. Fatal and non-fatal stingray envenomation. Med J Aust. 1989;151(11–12):621–5.PubMedGoogle Scholar
  55. 55.
    Ikeda T. Supraventricular bigeminy following a stingray envenomation: a case report. Hawaii Med J. 1989;48:162–4.PubMedGoogle Scholar
  56. 56.
    Haddad V, Neto DG, dePaula Neto JB, et al. Freshwater stingrays: study of epidemiologic, clinic and therapeutic aspects based on 84 envenomings in humans and some enzymatic activities of the venom. Toxicon. 2004;43(3):287–94.PubMedCrossRefGoogle Scholar
  57. 57.
    Isbister GK. Venomous fish stings in tropical Northern Australia. Am J Emerg Med. 2001;19(7):561–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Forrester MB. Pattern of stingray injuries reported to Texas poison control centers from 1998 to 2004. Hum Exp Toxicol. 2005;24:639–42.PubMedCrossRefGoogle Scholar
  59. 59.
    Clark RF, Girard RH, Rao D, et al. Stingray envenomation: a retrospective review of clinical presentation and treatment in 119 cases. J Emerg Med. 2007;33(1):33–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Srinivasan S, Bosco JI, Lohan R. Marine stingray injuries to the extremities: series of three cases with emphasis on imaging. J Postgrad Med. 2012;59(4):309–11.CrossRefGoogle Scholar
  61. 61.
    Barber GR, Swygert JS. Necrotizing fasciitis due to Photobacterium damsela in a man lashed by a stingray. New Engl J Med. 2000;342(11):824.PubMedCrossRefGoogle Scholar
  62. 62.
    Campbell J, Grenon M, You CK. Psuedoaneurysm of the superficial femoral artery resulting from stingray envenomation. Ann Vasc Surg. 2003;17(2):217–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Cooper NK. Historical vignette: the death of an Australian army doctor on Thursday Island in 1915 after envenomation by a stone fish. J Roy Army Med Corps. 1991;137(2):104–5.PubMedGoogle Scholar
  64. 64.
    Diaz JH. Marine Scorpaenidae envenomation in travelers: epidemiology, management, and prevention. J Travel Med. 2015;22(4):251–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Gomes HL, Andrich F, Mauad H, et al. Cardiovascular effects of scorpionfish (Scorpaena plumieri) venom. Toxicon. 2010;55:580–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Kizer KW, McKinney HE, Auerbach PS. Scorpaenidae envenomation: a five-year poison center experience. JAMA. 1985;253:807–10.PubMedCrossRefGoogle Scholar
  67. 67.
    Aldred B, Erikson T, Lipscomb J. Lionfish envenomations in an urban wilderness. Wild Environ Med. 1996;7:291–6.CrossRefGoogle Scholar
  68. 68.
    Trestrail JH, al Manasneh QM. Lionfish sting experiences of an inland poison center: a retrospective study of 23 cases. Vet Hum Toxicol. 1989;31:173–5.PubMedGoogle Scholar
  69. 69.
    Garyfallou GT, Madden JF. Lionfish envenomation. Ann Emerg Med. 1996;28:456–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Vetrano SJ, Lebowitz JB, Marcus S. Lionfish envenomation. J Emerg Med. 2002;23(4):379–82.PubMedCrossRefGoogle Scholar
  71. 71.
    Auerbach PS. Envenomation by aquatic vertebrates. In: Auerbach PS, editor. Wilderness medicine. 6th ed. Philadelphia: Elsevier-Mosby; 2011.Google Scholar
  72. 72.
    Currie BJ. Marine antivenoms. J Toxicol Clin Toxicol. 2003;41(3):301–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Church JE, Hodgson WC. Dose-dependent cardiovascular and neuromuscular effects of stonefish (Synanceja trachynis) venom. Toxicon. 2000;38(3):391–407.PubMedCrossRefGoogle Scholar
  74. 74.
    Khoo HE. Bioactive proteins from Stonefish venom. Clin Exp Pharm Physio. 2002;29:802–6.CrossRefGoogle Scholar
  75. 75.
    Lehmann DF, Hardy JC. Stonefish envenomation. New Engl J Med. 1993;329:510–1.PubMedCrossRefGoogle Scholar
  76. 76.
    Ngo SYA, Ong SHJ, Ponampalam R. Stonefish envenomation presenting to a Singapore hospital. Singapore Med J. 2009;50(5):506–9.PubMedGoogle Scholar
  77. 77.
    Gomes HL, Menezes TN, Carnielli JBT, et al. Stonefish antivenom neutralizes the inflammatory and cardiovascular effects induced by scorpionfish (Scorpaena plumieri) venom. Toxicon. 2011;57:992–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Church JE, Hodgson WC. Stonefish (Synanceia spp.) antivenom neutralizes the in vitro and in vivo cardiovascular activity of soldierfish (Gymnapistes marmoratus) venom. Toxicon. 2001;39:319–24.PubMedCrossRefGoogle Scholar
  79. 79.
    Patkin M, Freeman D. Bullrout stings. Med J Aust. 1969;2:14–6.PubMedGoogle Scholar
  80. 80.
    Hahn ST, O’Connor JM. An investigation of the biologic activity of bullrout (Notesthes robusta) venom. Toxicon. 2000;38:79–89.PubMedCrossRefGoogle Scholar
  81. 81.
    Church JE, Hodgson WC. Adrenergic and cholinergic activity contributes to the cardiovascular effects of lionfish (Pterois volitans) venom. Toxicon. 2002;40:787–96.PubMedCrossRefGoogle Scholar
  82. 82.
    Das SK, Johnson MB, Cohly HH. Catfish stings in Mississippi. South Med J. 1995;88:809–12.PubMedCrossRefGoogle Scholar
  83. 83.
    Shiomi K, et al. Toxins in the skin secretions of the oriental catfish (Plotosus lineatus): immunological properties and immunocytochemical identification of producing cells. Toxicon. 1988;26:353.PubMedCrossRefGoogle Scholar
  84. 84.
    Blomkalns A. Catfish spine envenomation: a case report and literature review. Wilderness Environ Med. 1999;10(4):242–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Gudger EW. On the alleged penetration of the human urethra by an Amazonian catfish called candiru with a review of the allied habits of other members of the family pygidiidae: part II. Am J Surg. 1930;8:443–56.CrossRefGoogle Scholar
  86. 86.
    Breault JL. Candru: Amazonian parasitic catfish. J Wilderness Med. 1991;2:304–12.CrossRefGoogle Scholar
  87. 87.
    Bonnet MS. The toxicology of Trachinus vipera: the lesser weeverfish. Br Homeopath J. 2000;89:84–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Davies RS, Evans RJ. Weeverfish fish stings a report of two cases presenting to an accident and emergency department. J Accid Emerg Med. 1996;13:139–41.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Russell FE. Weeverfish sting in the last world. Br Med J. 1983;287:981.CrossRefGoogle Scholar
  90. 90.
    Deehan A, Ben-Meir P, Sagi A. A scorpion fish (Trachinus vipera) sting: fishermen’s hazard. Br J Indust Med. 1991;48:718–20.Google Scholar
  91. 91.
    Duran FY, Duran O. Weever fish sting: An unusual problem. J Acad Emer Med. 2014;13:42–3. Letter to the Editor.CrossRefGoogle Scholar
  92. 92.
    Gonzago RAF. Spontaneous abortion after weeverfish sting. Br Med J. 1985;290:518.Google Scholar
  93. 93.
    Briars GL. Envenomation by the lesser weeverfish. Br J Gen Pract. 1992;42(358):213.Google Scholar
  94. 94.
    McGoldrick J, Marx JA. Marine envenomations. Part 1. Vertebrates. J Emerg Med. 1990;9:497–502.CrossRefGoogle Scholar
  95. 95.
    Cain D. Weever fish sting: an unusual problem. Br Med Res. 1983;287:406–7.CrossRefGoogle Scholar
  96. 96.
    Halpern P, Sorkine P, Raskin Y. Envenomation by Trachinus draco in the eastern Mediterranean. Eur J Emerg Med. 2002;9:274–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Kayal M, Vercelloni J, Lison de Loma T, Bosserelle P, Chancerelle Y, Geoffroy S, Stievenart C, Michonneau F, Penin L, Planes S, Adjeroud M. Predator crown of thorns starfish (Acanthaster planci) outbreak, mass mortality of corals and cascading effects of reef fish and benthic communities. PLoS One. 2012;7(10):e47363.Google Scholar
  98. 98.
    Sato H, Tsuruta Y, Yamamoto Y, Asato Y, Taira K, Hagiwara K, Kayo S, Iwanaga S, Uezato H. Case of skin injuries due to stings by crown-of-thorns starfish (Acanthaster planci). J Dermatol. 2008;35:162–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Shiomi K, Yamamoto S, Yamanaka H, Kikuchi T. Purification and characterization of a lethal factor in venom from the crown-of-thorns starfish (Acanthaster planci). Toxicon. 1988;26(11):1077–83.PubMedCrossRefGoogle Scholar
  100. 100.
    Lee CC, Hsieh HJ, Hsieh CH, Hwang DF. Spine venom of crown-of-thorns starfish (Acanthaster planci) induces antiproliferation and apoptosis of human melanoma cell. Toxicon. 2014;91:126–34.PubMedCrossRefGoogle Scholar
  101. 101.
    Shiomi K, Yamamoto S, Yamanaka H, Kikuchi T, Konno K. Liver damage by the crown-of-thorns starfish. Toxicon. 1990;28(5):469–75.PubMedCrossRefGoogle Scholar
  102. 102.
    Yamasaki Y, Ito K, Enomoto Y, Sutko JL. Alterations by saponins of passive Ca2+ permeability and Na+−Ca2+ exchange activity of canine cardiac sacrolemmal vesicles. Biochim Biophys Acta. 1987;897(3):481–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Ihama Y, Fukasawa M, Ninomiya K, Kawakami Y, Nagai T, Fuke C, Miyazaki T. Anaphylactic shock caused by sting of crown-of-thorns starfish (Acanthaster planci). Forensic Sci Int. 2014;236:e5–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Mathger LM, Bell GR, Kuzirian AM, et al. How does the blue-ringed octopus (Hapalochlaena lunulata) flash its blue rings? J Exp Biol. 2012;215:3752–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Yotsu-Yamashita M, Mebs D, Flachsenberger WA. Distribution of tetrodotoxin in the body of the blue-ringed octopus (Hapalochlaena maculosa). Toxicon. 2007;49:410–2.PubMedCrossRefGoogle Scholar
  106. 106.
    Sutherland SK, Lane WR. Toxins and mode of envenomation of the common ringed or blue-banded octopus. Med J Aust. 1969;1:893–8.PubMedGoogle Scholar
  107. 107.
    Edmonds C. A non-fatal case of blue-ringed octopus bite. Med J Aust. 1969;2(12):601.PubMedGoogle Scholar
  108. 108.
    Cavazzoni E, Lister B, Sargent P, et al. Blue-ringed octopus (Hapalochlaena sp.) envenomation of a 4-year-old boy: a case report. Clin Toxicol. 2008;46(8):760–1.CrossRefGoogle Scholar
  109. 109.
    Walker DG. Survival after severe envenomation by the blue-ringed octopus (Hapalochlaena maculosa). Med J Aust. 1983;2:663–5.PubMedGoogle Scholar
  110. 110.
    Flachsenberger WA. Respiratory failure and lethal hypotension due to blue-ringed octopus and tetrodotoxin envenomation observed and counteracted in animal models. J Toxicol Clin Toxicol. 1986;24(6):485–502.PubMedCrossRefGoogle Scholar
  111. 111.
    Williamson JA. The blue-ringed octopus bite and envenomation syndrome. Clin Dermatol. 1987;5:127–33.PubMedCrossRefGoogle Scholar
  112. 112.
    Fulghum DD. Octopus bite resulting in granuloma annulare. South Med J. 1986;79:1434.PubMedCrossRefGoogle Scholar
  113. 113.
    Terlau H, Olivera BM. Conus venoms: a rich source of novel ion channel targeted peptides. Physiol Rev. 2004;84:41–68.PubMedCrossRefGoogle Scholar
  114. 114.
    Yoshiba S. An estimation of the most dangerous species of cone shell: Conus geographus venoms lethal dose to humans. Jpn J Hyg. 1984;39:565–72.CrossRefGoogle Scholar
  115. 115.
    Dutertre S, Jin AH, Alewood PF, Lewis RJ. Intraspecific variations in Conus geographus defence-evoked venom and estimation of the human lethal dose. Toxicon. 2014;91:135–44.PubMedCrossRefGoogle Scholar
  116. 116.
    Lewis RJ, Dutertre S, Vetter I, et al. Conus venom peptide pharmacology. Pharmacol Rev. 2012;64:259–98.PubMedCrossRefGoogle Scholar
  117. 117.
    Bingham JP, Baker MR, Chun JB. Analysis of a snail’s killer cocktail – the milked venom of Conus geographus. Toxicon. 2012;60:1166–70.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Holmes D. Conotoxins: how a deadly snail could help ease pain. Lancet Neurol. 2014;13(9):867–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Prommer EE. Ziconotide: can we use it in palliative care? Am J Hosp Palliat Med. 2005;22(5):369–74.CrossRefGoogle Scholar
  120. 120.
    Fegen D, Andresen D. Conus geographus envenomation. Lancet. 1997;349(9066):1672.CrossRefGoogle Scholar
  121. 121.
    Haddad V, Clotro M, Simone LR. Report of a human accident caused by Conus regis (Gastropoda, Conidae). Rev Soc Bras Med Trop. 2009;42(4):446–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Rice RD, Halstead BW. Report of a fatal cone shell sting by Conus geographus (Linnaeus). Toxicon. 1968;5(3):223–4.PubMedCrossRefGoogle Scholar
  123. 123.
    Sciani JM, Antoniazzi MM, Neves AC, Pimenta DC. Cathepsin B/X is secreted by Echinometra lucunter sea urchin spines, a structure rich in granular cells and toxins. J Venom Anim Toxins Incl Trop Dis. 2013;91(1):33.CrossRefGoogle Scholar
  124. 124.
    Balhara K, Stolbach A. Marine envenomations. Clin Toxicol. 2014;32(1):223–43.Google Scholar
  125. 125.
    Nakagawa H, Tu AT, Kimura A. Purification and characterization of contractin A from the pedicellarial venom of sea urchin (Toxopneustes pileolus). Arch Biochem Biophys. 1991;284:279.PubMedCrossRefGoogle Scholar
  126. 126.
    Takei M, et al. A toxic substance from the sea urchin Toxopneustes pileolus induces histamine release from rat peritoneal mast cells. Agents Actions. 1991;32:224.PubMedCrossRefGoogle Scholar
  127. 127.
    Cracchiolo A, Goldberg L. Local and systemic reactions to puncture injuries by the sea urchin spine and the date palm thorn. Arthritis Rheum. 1977;20(6):1206–12.PubMedCrossRefGoogle Scholar
  128. 128.
    Orenstein A, Borenstein B, Ronen M, Shimoni T, Klein B. Sea urchin injuries. Harefuah. 1990;118(11):639–40.PubMedGoogle Scholar
  129. 129.
    O’Neal RL, Halstead BW, Howard LD. Injury to human tissues from sea urchin spines. Calif Med. 1964;101:199–202.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Linaweaver PG. Toxic marine life. Mil Med. 1967;131:437.Google Scholar
  131. 131.
    Guyot-Drouot M-H, Rouneau D, Rolland J-M, et al. Arthritis, tenosynovitis, fasciitis, and bursitis due to sea urchin spines: a series of 12 cases in Réunion Island. Joint Bone Spine. 2000;67:94–100.PubMedGoogle Scholar
  132. 132.
    Haneke E, Tosti A, Piraccini BM. Sea urchin granuloma of the nail apparatus: report of 2 cases. Dermatology. 1996;19(2):140–2.CrossRefGoogle Scholar
  133. 133.
    Auerbach PS. Envenomation by aquatic invertebrates. In: Auerbach PS, editor. Wilderness medicine. 4th ed. Philadelphia: Mosby; 2001.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Emergency MedicineOregon Health Sciences UniversityPortlandUSA
  2. 2.Department of Emergency MedicineOregon Health and Science UniversityPortlandUSA

Personalised recommendations