Encyclopedia of GIS

2017 Edition
| Editors: Shashi Shekhar, Hui Xiong, Xun Zhou

Modeling and Multiple Perceptions

  • Christine Parent
  • Stefano Spaccapietra
  • Esteban Zimányi
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-17885-1_805

Synonyms

Definition

Multirepresentation generalizes known concepts such as database views and geographic multiscale databases. This chapter describes the handling of multi-representation in the MADS (Modeling Application Data with Spatio-temporal features) data modeling approach. MADS builds on the concept of orthogonality to support multiple modeling dimensions. The structural basis of the MADS model is based on extended entity-relationship (ER) constructs. This is complemented with three other modeling dimensions: space, time, and representation. The latter allows the specification of multiple perceptions of the real world and modeling of the multiple representations of real-world elements that are needed to materialize these perceptions.

Historical Background

Traditional database design organizes the data of interest into a database schema, which describes objects and their relationships, as well as their attributes. At the...

This is a preview of subscription content, log in to check access.

References.

  1. Bédard Y, Bernier É (2002) Supporting multiple representations with spatial databases view management and the concept of VUEL. In: The joint workshop on multi-scale representation of spatial data, ISPRS WG IV/3, ICA Commission. On Map Generalization, Ottawa, 7–8 July 2002Google Scholar
  2. Bédard Y, Pageau J, Caron C (1992) Spatial data modeling: the Modul-R formalism and CASE technology. In: Proceedings of the ISPRS symposium, Washington DC, 1–14 Aug 1992Google Scholar
  3. Bédard Y, Larrivée S, Proulx MJ, Nadeau M (2004) Modeling geospatial databases with plug-ins for visual languages: a pragmatic approach and the impacts of 16 years of research and experimentations on perceptory. In: Wang S et al (eds) ER workshops, Shanghai. Lecture notes in computer science, vol 3289. Springer, Berlin/Heidelberg, pp 17–30Google Scholar
  4. Chen PP (1976) The entityrelationship model: towards a unified view of data. ACM Trans Database Syst 1: 9–36CrossRefGoogle Scholar
  5. David B, Raynal L, Schorter G (1993) GeO2: why objects in a geographical DBMS? In: Abel DJ, Ooi BC (eds) Proceedings of the 3rd international symposium on advances in spatial databases, SSD’93, Singapore, 23–25 June 1993. Lecture notes in computer science, vol 692, pp 264–276. Springer, Berlin/HeidelbergGoogle Scholar
  6. Erwig M, Schneider M (2002) Spatiotemporal predicates. IEEE Trans Knowl Data Eng 14:881–901CrossRefGoogle Scholar
  7. Parent C, Spaccapietra S, Zimányi E (2006a) Conceptual modeling for traditional and spatiotemporal applications: the MADS approach. Springer, Berlin/HeidelbergzbMATHGoogle Scholar
  8. Parent C, Spaccapietra S, Zimányi E (2006b) The MurMur project: modeling and querying multirepresented spatiotemporal databases. Inf Syst 31:733–769CrossRefGoogle Scholar
  9. Price R, Ramamohanarao K, Srinivasan B (1999) Spatiotemporal extensions to unified modeling language. In: Proceedings of the workshop on spatiotemporal data models and languages, IEEE DEXA’99 workshop, Florence, 1–3 Sept 1999Google Scholar
  10. Rumbaugh J, Jacobson I, Booch G (2005) The unified modeling language, reference manual, 2nd edn. AddisonWesley, BostonGoogle Scholar
  11. Tryfona N, Jensen CS (1999) Conceptual data modeling for spatiotemporal application. GeoInformatica 3(3):245–268CrossRefGoogle Scholar
  12. Weibel R, Dutton G (1999) Generalizing spatial data and dealing with multiple representations. In: Longley PA, Goodchild MF, Maguire DJ, Rhind DW (eds) Geographical information systems: principles, techniques, management and applications, 2nd edn., vol. 1. Wiley, New York, pp 125–155Google Scholar

Recommended Reading.

  1. Güting RH, Schneider M (2005) Moving objects databases. Morgan Kaufmann, AmsterdamzbMATHGoogle Scholar
  2. Koubarakis M et al (eds) (2003) Spatiotemporal databases: the chorochronos approach. Lecture notes in computer science, vol 2520. Springer, Berlin/HeidelbergGoogle Scholar
  3. Malinowski E, Zimányi E (2007, in press) Advanced data warehouse design: from conventional to spatial and temporal applications. Springer, Berlin/HeidelbergGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christine Parent
    • 1
  • Stefano Spaccapietra
    • 2
  • Esteban Zimányi
    • 3
  1. 1.University of LausanneLausanneSwitzerland
  2. 2.Swiss Federal Institute of TechnologyLausanneSwitzerland
  3. 3.Free University of BrusselsBrusselsBelgium