Encyclopedia of GIS

2017 Edition
| Editors: Shashi Shekhar, Hui Xiong, Xun Zhou

Hierarchical Spatial Models

  • Ali Arab
  • Mevin B. Hooten
  • Christopher K. Wikle
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-17885-1_564

Definition

A hierarchical spatial model is the product of conditional distributions for data conditioned on a spatial process and parameters, the spatial process conditioned on the parameters defining the spatial dependencies between process locations and the parameters themselves.

Historical Background

Scientists across a wide range of disciplines have long recognized the importance of spatial dependencies in their data and the underlying process of interest. Initially due to computational limitations, they dealt with such dependencies by randomization and blocking rather than the explicit characterization of the dependencies in their models. Early developments in spatial modeling started in the 1950s and 1960s motivated by problems in mining engineering and meteorology (Cressie 1993), followed by the introduction of Markov random fields (Besag 1974). The application of hierarchical spatial and...

This is a preview of subscription content, log in to check access.

References

  1. Banerjee S, Gelfand AE, Finley AO, Sang H (2008) Gaussian predictive process models for large spatial data sets. J R Stat Soc: Ser B (Stat Methodol) 70:825–848. doi:10.1111/j.1467-9868.2008.00663.xMathSciNetzbMATHCrossRefGoogle Scholar
  2. Banerjee S, Carlin BP, Gelfand AE (2015) Hierarchical modeling and analysis for spatial data, 2nd edn. CRC, Boca RatonzbMATHGoogle Scholar
  3. Berliner LM (1996) Hierarchical Bayesian time series models. In: Hanson K, Silver R (eds) Maximum entropy and Bayesian methods. Kluwer Academic, Dordrecht/Boston, pp 15–22CrossRefGoogle Scholar
  4. Besag J (1974) Spatial interactions and the statistical analysis of lattice systems (with discussion). J R Stat Soc Ser B 36:192–236MathSciNetzbMATHGoogle Scholar
  5. Besag J, York JC, Mollie A (1991) Bayesian image restoration, with two applications in spatial statistics (with discussion). Ann Inst Stat Math 43:1–59zbMATHCrossRefGoogle Scholar
  6. Carlin BP, Banerjee S (2003) Hierarchical multivariate CAR models for saptio-temporally correlated survival data (with discussion). In: Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M (eds) Bayesian statistics, vol 7. Oxford University Press, Oxford, pp 45–63Google Scholar
  7. Cressie NAC (1993) Statistics for spatial data. Wiley, New YorkzbMATHGoogle Scholar
  8. Cressie N, Huang H-C (1999) Classes of nonseparable spatio-temporal stationary covariance functions. J Am Stat Assoc 94:1330–1340MathSciNetzbMATHCrossRefGoogle Scholar
  9. Cressie N, Johannesson G (2008) Fixed rank kriging for very large spatial data sets. J R Stat Soc: Ser B (Stat Methodol) 70:209–226. doi:10.1111/j.1467-9868.2007.00633.xMathSciNetzbMATHCrossRefGoogle Scholar
  10. Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, HobokenzbMATHGoogle Scholar
  11. Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics (with discussions). Appl Stat 47(3):299–350zbMATHGoogle Scholar
  12. Givens GH, Hoeting JA (2005) Computational statistics. Wiley, HobokenzbMATHGoogle Scholar
  13. Hanks EM, Schliep EM, Hooten MB, Hoeting JA (2015) Restricted spatial regression in practice: geostatistical models, confounding, and robustness under model misspecification. Environmetrics. doi:10.1002/env.2331MathSciNetGoogle Scholar
  14. Higdon D (1998) Space and space-time modeling using process convolutions. In: Quantitative methods for current environmental issues. Springer, London, pp 37–56Google Scholar
  15. Hodges JS, Reich BJ (2010) Adding spatially-correlated errors can mess up the fixed effect you love. Am Stat 64(4):325–334MathSciNetzbMATHCrossRefGoogle Scholar
  16. Huang H-C, Cressie N (1996) Spatio-temporal prediction of snow water equivalent using the Kalman filter. Comput Stat Data Anal 22:159–175MathSciNetCrossRefGoogle Scholar
  17. Lindley DV, Smith AFM (1972) Bayes estimates for the linear model. J R Stat Soc Ser B 34:1–41MathSciNetzbMATHGoogle Scholar
  18. Paciorek CJ (2010) The importance of scale for spatial-confounding bias and precision of spatial regression estimators. Stat Sci 25(1):107–125MathSciNetzbMATHCrossRefGoogle Scholar
  19. Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B 71:319–392MathSciNetzbMATHCrossRefGoogle Scholar
  20. Stein ML (2005) Space-time covariance functions. J Am Stat Assoc 100:320–321MathSciNetCrossRefGoogle Scholar
  21. Waller LA, Xia BP, Gelfand AE (1997) Hierarchical spatio-temporal mapping of disease rates. J Am Stat Assoc 92:607–617zbMATHCrossRefGoogle Scholar
  22. West M, Harrison J (1989) Bayesian forecasting and dynamic models. Springer, New YorkzbMATHCrossRefGoogle Scholar
  23. Whittle P (1954) On stationary processes in the plane. Biometrika 41(3):434–449MathSciNetzbMATHCrossRefGoogle Scholar
  24. Wikle CK (2010) Low-rank representations for spatial processes. In: Handbook of spatial statistics. pp 107–118Google Scholar
  25. Wikle CK, Berliner LM (2005) Combining information across spatial scales. Technometrics 47:80–91MathSciNetCrossRefGoogle Scholar
  26. Wikle CK, Cressie N (1999) A dimension-reduced approach to space-time Kalman filtering. Biometrika 86(4):815–829MathSciNetzbMATHCrossRefGoogle Scholar
  27. Wikle CK, Hooten MB (2006) Hierarchical Bayesian spatio-temporal models for population spread. In: Clark JS, Gelfand AE (eds) Hierarchical modelling for the environmental sciences. Oxford University Press, Oxford, pp 145–169Google Scholar
  28. Wikle CK, Hooten MB (2010) A general science-based framework for dynamical spatio-temporal models. Test 19(3):417–451MathSciNetzbMATHCrossRefGoogle Scholar
  29. Wikle CK, Berliner LM, Cressie N (1998) Hierarchical Bayesian space-time models. J Environ Ecol Stat 5:117–154CrossRefGoogle Scholar
  30. Wikle CK, Millif RF, Nychka D, Berliner LM (2001) Spatiotemporal hierarchical Bayesian modeling: tropical ocean surface winds. J Am Stat Assoc 96:382–397MathSciNetzbMATHCrossRefGoogle Scholar

Recommended Reading

  1. Wikle CK (2015) Modern perspectives on statistics for spatio-temporal data. Wiley Interdiscip Rev Comput Stat 7(1):86–98MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ali Arab
    • 1
  • Mevin B. Hooten
    • 2
  • Christopher K. Wikle
    • 3
  1. 1.Department of Mathematics and StatisticsGeorgetown UniversityWashingtonUSA
  2. 2.U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Department of Fish, Wildlife, and Conservation Biology, Department of StatisticsColorado State UniversityFort CollinsUSA
  3. 3.Department of StatisticsUniversity of Missouri-ColumbiaColumbiaUSA