Encyclopedia of GIS

2017 Edition
| Editors: Shashi Shekhar, Hui Xiong, Xun Zhou

Trip Planning Queries in Road Network Databases

  • Feifei Li
  • Marios Hadjieleftheriou
  • George Kollios
  • Dihan Cheng
  • Shang-Hua Teng
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-17885-1_1416



Consider a database that stores a spatial road network and a set of points of interest that are located on the edges of the network and belong to one or more categories from a fixed set of categories \(\mathcal{C}\)

This is a preview of subscription content, log in to check access.


  1. Arora S (1998) Polynomial-time approximation schemes for Euclidean TSP and other geometric problems. J ACM 45(5):753–782MathSciNetzbMATHCrossRefGoogle Scholar
  2. Bansal N, Blum A, Chawla S, Meyerson A (2004) Approximation algorithms for deadline-TSP and vehicle routing with time-windows. In: Proceedings of FOCSzbMATHCrossRefGoogle Scholar
  3. Christofides N (1976) Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, Computer Science Department, CMUGoogle Scholar
  4. Cormen T, Leiserson C, Rivest R, Stein C (1997) Introduction to algorithms. The MIT Press, CambridgezbMATHGoogle Scholar
  5. Dumitrescu A, Mitchell JSB (2001) Approximation algorithms for TSP with neighborhoods in the plane. In: SODA ’01: Proceedings of the twelfth annual ACM-SIAM symposium on discrete algorithms, pp 38–46Google Scholar
  6. Garg N, Konjevod G, Ravi R (1998) A polylogarithmic approximation algorithm for the group steiner tree problem. In: Proceedings of SODAzbMATHGoogle Scholar
  7. Li F, Cheng D, Hadjieleftheriou M, Kollios G, Teng S-H (2005) On trip planning queries in spatial databases. In: SSTD: Proceedings of the international symposium on advances in spatial and temporal databases, pp 273–290Google Scholar
  8. Ma X, Shekhar S, Xiong H, Zhang P (2006) Exploiting a page-level upper bound for multi-type nearest neighbor queries. In: ACM GIS, pp 179–186Google Scholar
  9. Myung Y, Lee C, Tcha D (1995) On the generalized minimum spanning tree problem. Networks 26:231–241MathSciNetzbMATHCrossRefGoogle Scholar
  10. Papadias D, Zhang J, Mamoulis N, Taom Y (2003) Query processing in spatial network databases. In: Proceedings of VLDBCrossRefGoogle Scholar
  11. Sharifzadeh M, Kolahdouzan M, Shahabi C (2007) The optimal sequenced route query. VLDB J 17:765–787CrossRefGoogle Scholar
  12. Shekhar S, Liu D (1997) CCAM: a connectivity/clustered access method for networks and network computations. IEEE TKDE 19(1):102–119Google Scholar
  13. TSP Home Web Site. http://www.tsp.gatech.edu/
  14. Yiu M, Mamoulis N (2004) Clustering objects on a spatial network. In: Proceedings of SIGMODCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Feifei Li
    • 1
  • Marios Hadjieleftheriou
    • 2
  • George Kollios
    • 3
  • Dihan Cheng
    • 4
  • Shang-Hua Teng
    • 5
  1. 1.Department of Computer Science, Florida State UniversityTallahasseeUSA
  2. 2.AT&T Labs Inc.Florham ParkUSA
  3. 3.Computer Science Department, Boston UniversityBostonUSA
  4. 4.Computer Science Department, Boston UniversityBostonUSA
  5. 5.Computer Science Department, Boston UniversityBostonUSA