Antarctic Marine Animal Forests: Three-Dimensional Communities in Southern Ocean Ecosystems

  • Julian GuttEmail author
  • Vonda Cummings
  • Paul Dayton
  • Enrique Isla
  • Anke Jentsch
  • Stefano Schiaparelli
Living reference work entry


Both Southern Ocean and terrestrial systems contain three-dimensional biotic components that are key in shaping and defining their respective ecosystems and communities. Antarctic suspension-feeding communities, which inhabit the shelf of the Southern Ocean, resemble “Terrestrial Vegetation Forests” (TVF) or shrublands and support the concept of “Antarctic Marine Animal Forests” (AMAF). They comprise mostly sessile animals, provide microniches for an associated mobile fauna, and are fragmented and regionally mixed with other communities. On land, only high mountains and very dry regions are unsuitable for TVF, analogous to the virtual absence of AMAF from the deep sea (>1000 m). Besides fundamental differences between these systems in energy flow and other ecological drivers such as light requirements and dispersal opportunities, both “forests” experience similar disturbances, which impact ecosystem dynamics and diversity in similar ways. While land use affects and reduces terrestrial forests, climate change and fishing impacts are the most serious threats to the Southern Ocean ecosystem. Research priorities for a better understanding of “Antarctic Marine Animal Forests” demand (1) mapping biotic communities and their structural and functional diversity, especially in terms of hot and cold spots; (2) understanding ecological function, including ecosystem productivity and dynamics; (3) cross-system comparison to identify generality or uniqueness in ecosystem structure and dynamics; and (4) implication of existing and new research approaches and conservation strategies.


Limiting factors Ecological drivers Areal coverage Three-dimensional structure Interactions Energy flow Disturbance Climate change Conservation 


  1. Barnes DKA, Clarke A. Seasonality in feeding activity in Antarctic suspension feeders. Polar Biol. 1995;15:335–40.CrossRefGoogle Scholar
  2. Breckle S-W. Walter’s vegetation of the earth. Translated from the 7th, completely revised and enlarged German edition “Vegetation und Klimazonen’ by Gudrun and David Lawlor. Berlin: Springer; 2002.Google Scholar
  3. Bullivant JS. An oceanographic survey of the Ross Sea. Nature. 1959;184(4684):422–3.CrossRefGoogle Scholar
  4. Bullivant JS, Dearborn JH. Ecology of the Ross Sea benthos. In: The fauna of the Ross Sea. Bulletin of the New Zealand Department of Scientific and Industrial Research. New Zealand Oceanographic Institute, Wellington, N.Z., 1967; 32. p. 49–78.Google Scholar
  5. Charette MA, Gille ST, Sanders RJ, Zhou M. Southern ocean natural iron fertilization. Deep-Sea Res II. 2013;90:1–3.CrossRefGoogle Scholar
  6. Clarke A, Barnes DKA, Hodgson DA. How isolated is Antarctica? Trends Ecol Evol. 2005;20:1–3.CrossRefPubMedGoogle Scholar
  7. Cornell HV, Harison SP. Regional effects as important determinants of local diversity in both marine and terrestrial systems. Oikos. 2013;122:288–97.CrossRefGoogle Scholar
  8. Dayton PK. Polar benthos. In: Smith WO, editor. Polar oceanography, part B: chemistry, biology, and geology. London: Academic; 1990.Google Scholar
  9. Dayton PK, Robilliard GA, Paine RT, Dayton LB. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol Monogr. 1974;44:105–28.CrossRefGoogle Scholar
  10. Dayton PK, Kim S, Jarrell SC, Oliver JO, Hammerstrom K, Fisher JL, O’Connor K, Barber JS, Robilliard G, Barry J, Thurber AR, Conlan K. Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini. PLoS ONE. 2013;8(2):e56939. doi:10.1371/journal.pone.0056939.PubMedCentralCrossRefPubMedGoogle Scholar
  11. De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’Udekem d’Acoz C, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y. Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research; 2014.Google Scholar
  12. FAO. State of the world’s forests 2012. Rome: FAO; 2012.Google Scholar
  13. Fisher R, O’Leary R-A, Low-Choy S, Mengersen K, Knowlton N, Brainard RE, Caley MJ. Species richness on coral reefs and the pursuit of convergent global estimates. Curr Biol. 2015;25(4):500–5.CrossRefPubMedGoogle Scholar
  14. Foley JA, DeFries R, Asner GP, Barfors C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kuckarik CJ, Monfreda C, Patz JA, Prentice C, Ramankutty N, Snyder PK. Global consequences of land use. Science. 2005;309(5734):570–4.CrossRefPubMedGoogle Scholar
  15. Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2000. FAO Forestry Paper 140. Rome: Food and Agriculture Organization of the United Nations; 2001.Google Scholar
  16. Gili J-M, Arntz WE, Palanques A, Orejas C, Clarke A, Dayton PK, Isla E, Teixidó N, Rossi S, López-González PJ. A unique assemblage of epibenthic sessile suspension feeders with archaic features in the high-Antarctic. Deep-Sea Res II. 2006;53:1029–52.CrossRefGoogle Scholar
  17. Gray JS, Bjørgesæter A, Ugland KI, Frank K. Are there different structure between marine and terrestrial assemblages? J Exp Mar Biol Ecol. 2006;330:19–26.CrossRefGoogle Scholar
  18. Groombridge B, Jenkins MD. World atlas of biodiversity. Berkley: University of California Press; 2002. Prepared by the UNEP World Conservation Monitoring Centre.Google Scholar
  19. Gutt J. How many macrozoobenthic species might inhabit the Antarctic shelf? Antarct Sci. 2004;16(1):11–6.CrossRefGoogle Scholar
  20. Gutt J, Piepenburg D. Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar Ecol Prog Ser. 2003;253:77–83.CrossRefGoogle Scholar
  21. Gutt J, Schickan T. Epibiotic relationships in the Antarctic benthos. Antarct Sci. 1998;10:398–405.CrossRefGoogle Scholar
  22. Gutt J, Gerdes D, Klages K. Seasonality and spatial variability in the reproduction of two Antarctic holothurians (Echinodermata). Polar Biol. 1992;11:533–44.CrossRefGoogle Scholar
  23. Gutt J, Hosie G, Stoddart M. Marine life in the Antarctic. In: McIntyre AD, editor. Life in the world’s oceans: diversity, distribution, and abundance. Oxford: Blackwell; 2010.Google Scholar
  24. Gutt J, Barratt I, Domack E, d’Udekem d’Acoz C, Dimmler W, Grémare A, Heilmayer O, Isla E, Janussen D, Jorgensen E, Kock K-H, Lehnert LS, López-Gonzáles P, Langner S, Linse K, Manjón-Cabeza ME, Meißner M, Montiel A, Raes M, Robert H, Rose A, Sañé Schepisi E, Saucède T, Scheidat M, Schenke H-W, Seiler J, Smith C. Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Res II. 2011;58:74–83.CrossRefGoogle Scholar
  25. Gutt J, Griffiths HJ, Jones CD. Circum-polar overview and spatial heterogeneity of Antarctic macrobenthic communities. Mar Biodivers. 2013;43:481–7.CrossRefGoogle Scholar
  26. Huston MA. Biological diversity: the coexistence of species on changing landscapes. Cambridge: Cambridge University Press; 1994.Google Scholar
  27. Isla E, Gerdes D, Palanques A, Arntz WE. Downward particle fluxes, wind and a phytoplankton bloom over a polar continental shelf: a stormy impulse for the biological pump. Mar Geol. 2009;259:59–72.CrossRefGoogle Scholar
  28. Isla E, Gerdes D, Rossi S, Fiorillo I, Sañé E, Gili J-M, Arntz WE. Biochemical characteristics of surface sediments on the eastern Weddell Sea continental shelf, Antarctica: is there any evidence of seasonal patterns? Polar Biol. 2011;34:1125–33.CrossRefGoogle Scholar
  29. Jentsch A, Beierkuhnlein C. Global climate change and local disturbance regimes as interacting drivers for shifting altitudinal vegetation patterns in high mountains. Erdkunde. 2003;57/3:218–33.Google Scholar
  30. Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. Oikos. 1994;69:373–86.CrossRefGoogle Scholar
  31. Kennicutt II MC, Chown SL, Cassano JJ, Liggett D, Massom R, Peck LS, Massom R, Rintoul SR, Storey J, Vaughan DG, Wilson TJ, Allison I, Ayton J, Badhe R, Baeseman J, Barrett PJ, Bell RE, Bertler N, Bo S, Brandt A, Bromwich D, Cary SC, Clark MS, Convey P, Costa ES, Cowan D, DeConto R, Dunbar R, Elfring C, Escutia C, Francis J, Fricker HA, Fukuchi M, Gilbert N, Gutt J, Havermans C, Hik D, Hosie G, Jones C, Kim YD, Le Mahon Y, Lee SH, Leppe M, Leychenkov G, Li X, Lipenkov V, Lochte K, López-Martínez J, Lüdecke C, Lyons W, Marenssi S, Miller H, Morozova P, Naish T, Nayak S, Ravindra R, Retamales J, Ricci CA, Rogan-Finnemore M, Ropert-Coudert Y, Samah AA, Sanson L, Scambos T, Schloss IR, Shiraishi K, Siegert MJ, Simões JC, Storey B, Sparrow MD, Wall DH, Walsh JC, Wilson G, Winther JG, Xavier JC, Yang H, Sutherland WJ. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct Sci. 2014. doi:10.1017/S0954102014000674.Google Scholar
  32. Kessler M, Keßler PJA, Gradstein SR, Bach K, Schmull M, Pitopang R. Three diversity in primary forest and different land use systems in Central Sulawesi, Indonesia. Biodivers Conserv. 2005;14:547–60.CrossRefGoogle Scholar
  33. Lohrer AM, Cummings VJ, Thrush SF. Altered sea ice thickness and permanence affects benthic ecosystem functioning in coastal Antarctica. Ecosystems. 2013. doi:10.1007/s10021-012-9610-7.Google Scholar
  34. Lowman MD, Rinker HB. Forest canopies. San Diego: Elsevier; 2004.Google Scholar
  35. Maldonado M, Aguilar R, Bannister RJ, Bell JJ, Conway KW, Dayton PK, Díaz C, Gutt J, Kelly M, Kenchington ELR, Leys SP, Pomponi SA, Rapp HT, Rützler K, Tendal OS, Vacelet J, Young CM. Sponge grounds as key marine habitats: a synthetic review of types, structure, functional roles, and conservation concerns. In: Rossi S, Bramanti L, Gori A, Orejas C, editors. Marine Animal Forests: the ecology of benthic biodiversity hotspots. Springer; in press.Google Scholar
  36. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. How many species are there on earth and in the ocean? PLoS Biol. 2011;9(8):e1001127. doi:10.1371/journal.pbio.1001127.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Niemann H, Fischer D, Graffe D, Knittel K, Montiel A, Heilmayer O, Nöthen K, Pape T, Kasten S, Bohrmann G, Boetius A, Gutt J. Biogeochemistry of a low-activity cold seep in the Larsen B area, western Weddell Sea, Antarctica. Biogeosciences. 2009;6:2383–95.CrossRefGoogle Scholar
  38. Odum EP. Fundamentals of ecology. 3rd ed. Philadelphia: W. B. Saunders Company; 1973.Google Scholar
  39. Pickett STA, White PS. The ecology of natural disturbance and patch dynamics. Orlando: Academic; 1985.Google Scholar
  40. Pimm SL, Jenkins CN, Abell R, Abell R, Brooks TM, Gittlerman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO. The biodiversity of species and their rates of extinction, distribution, and protection. Science. 2014;344(6187):1246752. doi:10.1126/science.1246752.CrossRefPubMedGoogle Scholar
  41. Post AL, O’Brien PE, Beaman RJ, Riddle MJ, De Santis L. Physical controls on deep water coral communities on the George V Land slope, East Antarctica. Antarct Sci. 2010;22(4):371–8.CrossRefGoogle Scholar
  42. Rogers AD, Tyler PA, Connelly DP, Copley JT, James R, Larter RD, Linse K, Mills RA, Naveira-Garabato A, Pancost RD, Pearce DA, Polunin NVC, German CR, Shank T, Boersch-Supan PH, Alker B, Aquilina A, Bennett SA, Clarke A, Dinley RJJ, Graham AGC, Green D, Hawkes JA, Hepburn L, Hilario A, Huvenne VAI, Marsh L, Ramirez-Llodra E, Reid WDK, Roterman CN, Sweeting CJ, Thatje S, Zwirglmaier K. The discovery of new deep-sea hydrothermal vent communities in the Southern Ocean and implications for biogeography. PLoS Biol. 2012;10(1):e1001234. doi:10.1371/journal.pbio.1001234. 10.PubMedCentralCrossRefPubMedGoogle Scholar
  43. Schiaparelli S. Chapter 5.31. Biotic Interactions. In: De Broyer C, Broyer C, Koubbi P, Griffiths H, Raymond B, d'Udekem d’Acoz C, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y, editors. Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research, Scott Polar Research Institute; 2014.Google Scholar
  44. Schiaparelli S, Ahyong S, Bowden D. Lebbeus kiae n. sp. (Decapoda: Caridea: Thoridae) from the Ross Sea, Antarctica: evidence of niche conservatism and host fidelity in polar shrimp species. Hydrobiologia; in press.Google Scholar
  45. Schuck A, Päivinen R, Hytönend T, Pajari B. Compilation of forestry terms and definitions. Joensuu: European Forest Institute; 2002.Google Scholar
  46. Schultz J. The ecozones of the world. The ecological divisions of the geosphere. Berlin: Springer; 2005.Google Scholar
  47. Shurin JB, Gruner DS, Hillebrand H. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc R Soc B. 2006;273:1–9.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Smith CR, Mincks S, DeMaster DJ. A synthesis of bentho-pelagic coupling on the Antarctic shelf: food banks, ecosystem inertia and global climate change. Deep-Sea Res II. 2006;53:875–94.CrossRefGoogle Scholar
  49. Steele JH, Carpenter SR, Cohen JE, Dayton PK, Ricklefs RE. Comparing terrestrial and marine ecological systems. In: Levin SA, Powell TM, Steele JH, editors. Patch dynamics. Berlin: Springer-Verlag; 1993.Google Scholar
  50. Thonicke K, Venevsky S, Sitch S, Cramer W. The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Glob Ecol Biogeogr. 2001;10:661–77.CrossRefGoogle Scholar
  51. Thrush SF, Dayton PK, Cattaneo-Vietti R, Chiantore M, Cummings VJ, Andrew NL, Hawes I, Kim S, Kvitek R, Schwarz A-M. Broad-scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea. Deep Sea Res II. 2006;53:959–71.CrossRefGoogle Scholar
  52. Turner J, Barrand NE, Bracegirdle TJ, Convey P, Hodgson D, Jarvis M, Jenkins A, Marshall G, Meredith MP, Roscoe H, Shanklin J, French J, Goosse H, Gutt J, Jacobs S, Kennicutt II MC, Masson-Delmotte V, Mayewski P, Navarro F, Robinson S, Scambos T, Sparrow M, Summerhayes C, Speer K, Klepikov A. Antarctic climate change and the environment: an update. Polar Rec. 2014;50:237–59.CrossRefGoogle Scholar
  53. Walker LR. The biology of disturbed habitats. Oxford: Oxford Press; 2009.Google Scholar
  54. Webb TJ. Marine and terrestrial ecology: unifying concepts, revealing differences. Trends Ecol Evol. 2012;27:535–41.CrossRefPubMedGoogle Scholar
  55. White PS, Jentsch A. The search for generality in studies of disturbance and ecosystem dynamics. Progress Bot. 2001;63:399–449.CrossRefGoogle Scholar
  56. Wilson JB, Peet RK, Dengler J, Pärtel M. Plant species richness: the world records. J Veg Sci. 2012;23(4):796–802.CrossRefGoogle Scholar
  57. Winter M, Schweiger O, Klotz S, Nentwig W, Andriopoulos P, Arianoutsou M, Basnou C, Delipetrou P, Didziulis V, Hejda M, Hulme PE, Lambdon P, Pergl J, Pysek P, Roy DB, Kühn I. Losing uniqueness: plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the european flora. Proc Natl Acad Sci U S A. 2009;106(51):21721–5.PubMedCentralCrossRefPubMedGoogle Scholar
  58. Yu H, Chin M, Yuan T, Bian H, Remer LA, Prospero JM, Omar A, Winker D, Yang Y, Zhang Y, Zhang Z, Zhao C. The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from cloud-aerosol lidar and infrared pathfinder satellite observations. Geophys Res Lett. 2015;42:1984–91.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Julian Gutt
    • 1
    Email author
  • Vonda Cummings
    • 2
  • Paul Dayton
    • 3
  • Enrique Isla
    • 4
  • Anke Jentsch
    • 5
  • Stefano Schiaparelli
    • 6
    • 7
  1. 1.Helmholtz Centre for Polar and Marine ResearchAlfred Wegener InstituteBremerhavenGermany
  2. 2.NIWAHataitai, WellingtonNew Zealand
  3. 3.Mail Code O227Scripps Institution of OceanographyLa JollaUSA
  4. 4.Institut de Ciències del Mar-CSICBarcelonaSpain
  5. 5.Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
  6. 6.Di.S.T.A.V.Università di GenovaGenovaItaly
  7. 7.Italian National Antarctic Museum (Section of Genoa)GenovaItaly

Personalised recommendations