Where Seaweed Forests Meet Animal Forests: the Examples of Macroalgae in Coral Reefs and the Mediterranean Coralligenous Ecosystem

  • Charles F. Boudouresque
  • Aurélie Blanfuné
  • Mireille Harmelin-Vivien
  • Sébastien Personnic
  • Sandrine Ruitton
  • Thierry Thibaut
  • Marc Verlaque
Living reference work entry


The Mediterranean coralligenous and the intertropical coral reef ecosystems are similar in several aspects, such as their ability to thrive in nutrient-poor waters and the communities associated with them. For example, these ecosystems encompass communities ranging from bioconstructions by calcified blade-forming coralline macroalgae, bioconstructions by calcified hexacorallians, canopy-forming seaweed forests, canopy-forming gorgonian (animal) forests, to turfs of macroalgae. They depend mainly upon available light, temperature, and herbivore pressure. In spatial terms, these communities can constitute a complex mosaic. Over time, they can follow each other throughout ecological successions, i.e., a suite of shifts, or phase-shift events, as a consequence of natural or anthropogenic disturbances. Some of these communities, of which the autogenic ecosystem engineers are esthetically pleasing, large-sized, and long-lived, such as blade-forming corallines, gorgonians, and hexacorallians, are often explicitly or implicitly, but erroneously, regarded as the whole ecosystem, whereas they are in fact only part of it. Both coral reefs and the Mediterranean coralligenous ecosystems dwell in highly oligotrophic waters. Their success hinges upon mutualism with unicellular primary producers (dinobionts), the efficient recycling of nitrogen, and diazotrophy (coral reefs), and upon the input of allochthonous organic matter (coralligenous), rather than on the primary production of macroalgae alone (e.g., Cystoseira, Sargassum, Turbinaria, and turf-forming species). In addition, species diversity is high, which substantially helps to make these ecosystems species diversity hotspots. The close intertwining of the different communities (seaweed forests, heterotrophic animal forests, photosynthetic animal forests – via mutualism – and highly productive macroalgal turfs) within these two ecosystems, together with the massive precipitation of calcium carbonate, makes the structure and functioning of these ecosystems highly original, without counterpart in the terrestrial realm.


Animal forests Coralligenous Coral reefs Cystoseira Disturbances Mediterranean Sea Sargassum Scleractinians Seaweed forests Turbinaria 



The authors are indebted to an anonymous reviewer and to the editor, Sergio Rossi, for suggestions, and to Michael Paul, a native English speaker, for improving the English text.


  1. Aguilar R, García S, Ubero D. Distribution of deep-sea laminarians around three Spanish marine protected areas. In: Proceedings of the fourth Mediterranean symposium on marine vegetation. Tunis: UNEP Publication; 2010. p. 145–6.Google Scholar
  2. Arnold SN, Steneck R, Mumby PJ. Running the gauntlet: inhibitory effects of algal turfs on the processes of coral recruitment. Mar Ecol Prog Ser. 2010;414:91–105.CrossRefGoogle Scholar
  3. Balata D, Piazzi L, Cecchi E, Cinelli F. Variability of Mediterranean coralligenous assemblages subject to local variation in sediment deposition. Mar Environ Res. 2005;60(4):403–21.PubMedCrossRefGoogle Scholar
  4. Ballesteros E. Els vegetals i la zonació litoral: espècies, communitats i factors que influeixen en la seva distribució. Barcelona: Institut d’Estudis Catalans; 1992.Google Scholar
  5. Ballesteros E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol Annu Rev. 2006;44:123–95.CrossRefGoogle Scholar
  6. Ballesteros E, Garrabou J, Hereu B, Zabala M, Cebrian E, Sala E. Deep water stands of Cystoseira zosteroides C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean. Insights into assemblage structure and population dynamics. Estuar Coast Shelf Sci. 2009;82:477–84.CrossRefGoogle Scholar
  7. Bellwood DR, Hughes TP, Folke C, Nyström M. Confronting the coral reef crisis. Nature. 2004;429:826–33.CrossRefGoogle Scholar
  8. Bensoussan N, Romano JC, Harmelin JG, Garrabou J. High resolution characterization of northwest Mediterranean coastal waters thermal regime: to better understand responses of benthic communities to climate change. Estuar Coast Shelf Sci. 2010;87:431–41.CrossRefGoogle Scholar
  9. Boisset F, Ferrer-Gallego PP, Furnari G, Cormaci M, Dennetiere B. Typification of the Mediterranean endemic deep-water macroalga Laminaria rodriguezii Bornet (Laminariaceae, Phaeophyceae). Cryptogam Algol. 2016;37(2):1–12.CrossRefGoogle Scholar
  10. Boudouresque CF. Recherches de bionomie analytique, structurale et expérimentale sur les peuplements benthiques sciaphiles de Méditerranée occidentale (fraction algale). La sous-strate sciaphile des peuplements de grandes Cystoseira de mode battu. Bulletin du Muséum d’Histoire Naturelle de Marseille. 1971; 31: 141–151 + 1 table.Google Scholar
  11. Boudouresque CF. Recherches de bionomie analytique, structurale et expérimentale sur les peuplements benthiques sciaphiles de Méditerranée Occidentale (fraction algale). Les peuplements sciaphiles de mode relativement calme sur substrats durs. Bulletin du Muséum d’Histoire Naturelle de Marseille. 1973;33:147–225.Google Scholar
  12. Boudouresque CF. Taxonomy and phylogeny of unicellular eukaryotes. In: Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T, editors. Environmental microbiology: fundamentals and applications. Microbial ecology. Dordrecht: Springer; 2015.Google Scholar
  13. Boudouresque CF, Bernard G, Bonhomme P, Charbonnel E, Diviacco G, Meinesz A, Pergent G, Pergent-Martini C, Ruitton S, Tunesi L. Protection and conservation of Posidonia oceanica meadows. Tunis: RAMOGE and RAC/SPA Publishing; 2012.Google Scholar
  14. Boudouresque CF, Ruitton S, Bianchi CN, Chevaldonné P, Fernandez C, Harmelin-Vivien M, Ourgaud M, Pasqualini V, Perez T, Pergent G, Thibaut T, Verlaque M. Terrestrial versus marine diversity of ecosystems. And the winner is: the marine realm. In: Langar H, Bouafif C, Ouerghi A, editors. Proceedings of the 5th Mediterranean Symposium on Marine Vegetation (Portorož, Slovenia, 27–28 Oct 2014). Tunis: RAC/SPA Publishing; 2014.Google Scholar
  15. Boudouresque CF, Caumette P, Bertrand JC, Normand P, Sime-Ngando T. Systematic and evolution of microorganisms: general concepts. In: Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T, editors. Environmental microbiology: fundamentals and applications. Microbial ecology. Dordrecht: Springer; 2015.Google Scholar
  16. Bruno JF, Sweatman H, Precht WF, Selig ER, Schutte VGW. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology. 2009;90(6):1478–84.PubMedCrossRefGoogle Scholar
  17. Cánovas Molina A, Montefalcone M, Vassallo P, Morri C, Bianchi CN, Bavestrello G. Combining literature review, acoustic mapping and in situ observations: an overview of coralligenous assemblages in Liguria (NW Mediterranean Sea). Sci Mar. 2016;80(1):7–16.Google Scholar
  18. Cebrian E, Linares C, Marschal C, Garrabou J. Exploring the effects of invasive algae on the persistence of gorgonian populations. Biol Invasions. 2012;14:2647–56.CrossRefGoogle Scholar
  19. Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F. A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecol Lett. 2000;3:284–93.CrossRefGoogle Scholar
  20. Coleman MA, Kelaher BP, Steinberg PD, Millar AJ. Absence of a large brown macroalga on urbanized rocky reefs around Sydney, Australia, and evidence for historical decline. J Phycol. 2008;44(4):897–901.PubMedCrossRefGoogle Scholar
  21. Coma R, Linares C, Ribes M, Diaz D, Garrabou J, Ballesteros E. Consequences of a mass mortality in populations of Eunicella singularis (Cnidaria: Octocorallia) in Menorca (NW Mediterranean). Mar Ecol Prog Ser. 2006;327:51–60.CrossRefGoogle Scholar
  22. Cowen R. The role of algal symbiosis in reefs through time. Palaios. 1988;3:221–6.CrossRefGoogle Scholar
  23. Diffenbaugh NS, Pal JS, Giorgi F, Gao X. Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett. 2007;34(11):1–6.CrossRefGoogle Scholar
  24. Eakin CM. Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982–1983 El Niño at Uva Island in the eastern Pacific. Coral Reefs. 1996;15:109–19.Google Scholar
  25. Fredj G. Compte-rendu de plongée en S.P. 300 sur les fonds à Laminaria rodriguezii Bornet de la pointe de Revellata (Corse). Bull Inst Océanogr Monaco. 1972;71(1421):1–42.Google Scholar
  26. Garrabou J, Ballesteros E. Growth of Mesophyllum alternans and Lithophyllum frondosum (Corallinales, Rhodophyta) in the northwestern Mediterranean. Eur J Phycol. 2000;35(1):1–10.CrossRefGoogle Scholar
  27. Garrabou J, Perez T, Sartoretto S, Harmelin JG. Mass mortality event in red coral Corallium rubrum populations in the Provence region (France, NW Mediterranean). Mar Ecol Prog Ser. 2001;217:263–72.CrossRefGoogle Scholar
  28. Garrabou J, Ballesteros E, Zabala M. Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. Estuar Coast Shelf Sci. 2002;55(3):493–508.CrossRefGoogle Scholar
  29. Gatti G, Bianchi CN, Parravicini V, Rovere A, Peirano A, Montefalcone M, Massa F, Morri C. Ecological change, sliding baselines and the importance of historical data: lessons from combining observational and quantitative data on a temperate reef over 70 years. PLoS One. 2015;10(2):1–20 (e118581).CrossRefGoogle Scholar
  30. Gennaro P, Piazzi L. Synergism between two anthropic impacts: Caulerpa racemosa var. cylindracea invasion and seawater nutrient enrichment. Mar Ecol Prog Ser. 2011;427:59–70.CrossRefGoogle Scholar
  31. Gili JM, Sardà R, Madurell T, Rossi S. Zoobenthos. In: Goffredo S, Dubinsky Z, editors. The Mediterranean Sea: its history and present challenges. Fauna. Dordrecht: Springer; 2014.Google Scholar
  32. Glynn PW, Manzello DP. Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C, editor. Coral reefs in the anthropocene. Dordrecht: Springer; 2015.Google Scholar
  33. Grottoli AG, Rodrigues LJ, Palardy JE. Heterotrophic plasticity and resilience in bleached coral. Nature. 2006;440:1186–9.PubMedCrossRefGoogle Scholar
  34. Hart DE, Kench PS. Carbonate production of an emergent reef platform, Warraber Island, Torres Strait, Australia. Coral Reefs. 2007;26:53–68.CrossRefGoogle Scholar
  35. Hata H, Kato M. Weeding by the herbivorous damselfish Stegastes nigricans in nearly monocultural algae farms. Mar Ecol Prog Ser. 2002;237:227–31.CrossRefGoogle Scholar
  36. Hereu B, Mangialajo L, Ballesteros E, Thibaut T. On the occurrence, structure and distribution of deep-water Cystoseira (Phaeophyceae) populations in the Port-Cros National Park (north-western Mediterranean). Eur J Phycol. 2008;43(3):263–73.CrossRefGoogle Scholar
  37. Hong JS. Etude faunistique d'un fond de concrétionnement de type coralligène soumis à un gradient de pollution en Méditerranée nord-occidentale (Golfe de Fos). Doctoral thesis, Aix-Marseille University, Marseille; 1980.Google Scholar
  38. Hughes TP. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science. 1994;265:1547–51.PubMedCrossRefGoogle Scholar
  39. James NP, Wray JL, Ginsburg RN. Calcification of encrusting aragonitic algae (Peyssonneliaceae): implications for the origin of Late Paleozoic reefs and cements. J Sediment Res. 1988;58(2):291–303.Google Scholar
  40. Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. Oikos. 1994;69:373–86.CrossRefGoogle Scholar
  41. Jones NS, Ridgwell A, Hendy EJ. Evaluation of coral reef carbonate production models at a global scale. Biogeosciences. 2015;12:1339–56.CrossRefGoogle Scholar
  42. Laborel J. Marine biogenic constructions in the Mediterranean. Sci Rep Port-Cros Natl Park. 1987;13:97–126.Google Scholar
  43. LaJeunesse TC, Thornhill DJ. Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One. 2011;6(12):1–11 (e29013).CrossRefGoogle Scholar
  44. Laubier L. Le coralligène des Albères. Monographie biocénotique. Ann Inst Oceanogr. 1966;43(2):137–316.Google Scholar
  45. Lee SY, Jeong HJ, Kang NS, Jang TY, Jang SH, Lajeunesse TC. Symbiodinium tridacnidorum sp. nov., a dinoflagellate common to Indo-Pacific giant clams, and a revised morphological description of Symbiodinium microadriaticum Freudenthal, emended Trench & Blank. Eur J Phycol. 2015;50(2):155–72.CrossRefGoogle Scholar
  46. Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Perez T. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol. 2010;25(4):250–60.PubMedCrossRefGoogle Scholar
  47. Leletkin VA. The energy budget of coral polyps. Russ J Mar Biol. 2000;26(6):389–98.CrossRefGoogle Scholar
  48. Leprieur F, Descombes P, Gaboriau T, Cowman PF, Parravicini V, Kubicki M, Melián CJ, De Santana CN, Heine C, Mouillot D, Bellwood DR, Pellissier L. Plate tectonic drive tropical reef biodiversity dynamics. Nat Commun. 2016;7(11461):1–8.Google Scholar
  49. Littler MM, Littler DS. Structure and role of algae in tropical reef communities. In: Lembi CA, Waaland JR, editors. Algae and human affairs. Cambridge/New York: Cambridge University Press; 1988.Google Scholar
  50. Littler MM, Littler DS, Taylor PR. Animal-plant defense associations: effects on the distribution and abundance of tropical reef macrophytes. J Exp Mar Biol Ecol. 1987;105:107–21.CrossRefGoogle Scholar
  51. Martin S, Gattuso JP. Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Chang Biol. 2009;15:2089–100.CrossRefGoogle Scholar
  52. Martin S, Cohu S, Vignot C, Zimmerman G, Gattuso JP. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecol Evol. 2013;3(3):676–93.PubMedPubMedCentralCrossRefGoogle Scholar
  53. McManus JW, Polsenberg JF. Coral-algal phase shifts on coral reefs: ecological and environmental aspects. Prog Oceanogr. 2004;60:263–79.CrossRefGoogle Scholar
  54. Moberg F, Folke C. Ecological goods and services of coral reef ecosystems. Ecol Econ. 1999;29:215–33.CrossRefGoogle Scholar
  55. Morganti C, Cocito S, Sgorbini S. Contribution of bioconstructors to coralligenous assemblages exposed to sediment deposition. Biol Mar Mediterr. 2001;8:283–6.Google Scholar
  56. Mortensen PB, Hovland MT, Fosså JH, Furevik DM. Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J Mar Biol Assoc UK. 2001;81(4):581–97.CrossRefGoogle Scholar
  57. Muscatine L, McCloskey LR, Marian RE. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr. 1981;26(4):601–11.CrossRefGoogle Scholar
  58. Navarro L, Hereu B, Linares C, Ballesteros E., Zabala M, Bonaviri C, Cebrián E, Teixidó N. Spatial and temporal variability on deep-water assemblages of Cystoseira zosteroides C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean and the effects of an exceptional storm. In: Assessment of the ecological impact of the extreme storm of Sant Esteve’s Day (26 December 2008) on the littoral ecosystems of the north Mediterranean, Spanish coasts. Final Report (PIEC 200430E599). Blanes: Centro de Estudios Avanzados de Blanes/Consejo Superior de Investigaciones Científicas Publisher; 2012.Google Scholar
  59. Norström AV, Nyström M, Lokrantz J, Folk C. Alternative states on coral reefs: beyond coral-macroalgae phase shifts. Mar Ecol Prog Ser. 2009;376:295–306.CrossRefGoogle Scholar
  60. Pala C. Life on the mean reefs. Science. 2007;318:1719.PubMedCrossRefGoogle Scholar
  61. Pérès JM. Structure and dynamics of assemblages in the benthal. In: Kine O, editor. Marine ecology, vol. 5, part 1. Chichester: Wiley; 1982.Google Scholar
  62. Pérès JM, Picard J. Nouveau manuel de bionomie benthique de la Mer Méditerranée. Recueil des Travaux de la Station Marine d’Endoume. 1964;31(47):3–137.Google Scholar
  63. Pérès JM, Picard J. Réflexions sur la structure trophique des édifices récifaux. Mar Biol. 1969;3:227–32.CrossRefGoogle Scholar
  64. Perez T, Garrabou J, Sartoretto S, Harmelin JG, Francour P, Vacelet J. Mortalité massive d'invertébrés marins: un événement sans précédent en Méditerranée nord-occidentale. C R Acad Sci Life Sci. 2000;323:853–65.CrossRefGoogle Scholar
  65. Personnic S, Boudouresque CF, Astruch P, Ballesteros E, Blouet S, Bellan-Santini D, Bonhomme P, Thibault-Botha D, Feunteun E, Harmelin-Vivien M, Pergent G, Pergent-Martini C, Pastor J, Poggiale JC, Renaud F, Thibaut T, Ruitton S. An ecosystem-based approach to assess the status of a Mediterranean ecosystem, the Posidonia oceanica seagrass meadow. Plos One. 2014;9(6):1–17 (e98994).CrossRefGoogle Scholar
  66. Pettay DT, Wham DC, Smith RT, Iglesias-Prieto R, LaJeunesse TC. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc Natl Acad Sci. 2015;112(24):7513–8.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Piazzi L, Balata D, Cecchi E, Cinelli F, Sartoni G. Species composition and patterns of diversity of macroalgal coralligenous assemblages in the north-western Mediterranean Sea. J Nat Hist. 2010;44(1–2):1–22.Google Scholar
  68. Piazzi L, Gennaro P, Balata D. Effects of nutrient enrichment on macroalgal coralligenous assemblages. Mar Pollut Bull. 2011;62(8):1830–5.PubMedCrossRefGoogle Scholar
  69. Piazzi L, Gennaro P, Balata D. Threats to macroalgal coralligenous assemblages in the Mediterranean Sea. Mar Pollut Bull. 2012;64(12):2623–9.PubMedCrossRefGoogle Scholar
  70. Ponti M, Perlini RA, Ventra V, Grech D, Abbiati M, Cerrano C. Ecological shifts in Mediterranean coralligenous assemblages related to gorgonian forest loss. PLoS One. 2014;9(7):1–13 (e102782).CrossRefGoogle Scholar
  71. Rossi S. The destruction of the ‘animal forests’ in the oceans: towards an over-simplification of the benthic ecosystems. Ocean Coast Manag. 2013;84:77–85.CrossRefGoogle Scholar
  72. Ruitton S, Personnic S, Ballesteros E, Bellan-Santini D, Boudoresque CF, Chevaldonné P, Bianchi CN, David R, Féral JP, Guidetti P, Harmelin JG, Montefalcone M, Morri C, Pergent G, Pergent-Martini C, Sartoretto S, Tanoue H, Thibaut T, Vacelet J, Verlaque M. An ecosystem-based approach to assess the status of the Mediterranean coralligenous habitat. In: Langar H, Bouafif C, Ouerghi A editors. Proceedings of the 5th Mediterranean Symposium on Marine Vegetation (Portorož, Slovenia, 27–28 Oct 2014). Tunis: RAC/SPA Publishing; 2014.Google Scholar
  73. Salomidi M, Katsanevakis S, Borja Á, Braeckman U, Damalas D, Galparsoro I, Mifsud R, Mirto S, Pascual M, Pipitone C, Rabaut M, Todorova V, Vassilopoulou V, Vega FT. Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management. Mediterr Mar Sci. 2012;13(1):49–88.CrossRefGoogle Scholar
  74. Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konotchick T, Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE, Walsh S, Jackson JBC, Knowlton N, Sala E. Baselines and degradation of coral reefs in the Northern Line Islands. PLoS One. 2008;3(2):1–11 (e1548).CrossRefGoogle Scholar
  75. Sartoretto S. Bioérosion des concrétions coralligènes de Méditerranée par les organismes perforants: essai de quantification des processus. C R Acad Sci Earth Planet Sci. 1998;327:839–44.Google Scholar
  76. Sartoretto S, Francour P. Quantification of bioerosion by Sphaerechinus granularis on “coralligène” concretions of the western Mediterranean. J Mar Biol Assoc UK. 1997;77:565–8.Google Scholar
  77. Sartoretto S, Verlaque M, Laborel J. Age of settlement and accumulation rate of submarine ‘coralligène’ (−10 to −60 m) of the northwestern Mediterranean Sea; relation to Holocene rise in sea level. Mar Geol. 1996;130:317–31.CrossRefGoogle Scholar
  78. Savage AM, Goodson MS, Visram S, Trapido-Rosenthal H, Wiedenmann J, Douglas AE. Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: dinoflagellates of the genus Symbiodinium in coral and sea anemones. Mar Ecol Prog Ser. 2002;244:17–26.CrossRefGoogle Scholar
  79. Schiel DR, Foster MS. The population biology of large brown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Annu Rev Ecol Syst. 2006;37:343–72.CrossRefGoogle Scholar
  80. Smith JE, Brainard R, Carter A, Grillo S, Edwards C, Harris J, Obura D, Rohwer F, Sala E, Vroom PS, Sandin S. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc R Soc B. 2016;283:1–9.Google Scholar
  81. Steneck R, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv. 2002;29(4):436–59.CrossRefGoogle Scholar
  82. Tegner MJ, Dayton PK. Sea urchins, El Niños and the long-term stability of southern California kelp forest communities. Mar Ecol Prog Ser. 1991;77:49–63.CrossRefGoogle Scholar
  83. Tegner MJ, Dayton PK, Edwards PB, Riser KL. Large-scale, low-frequency oceanographic effects on kelp forest succession: a tale of two cohorts. Mar Ecol Prog Ser. 1997;146:117–34.CrossRefGoogle Scholar
  84. Teixidó N, Casas E, Cebrián E, Linares C, Garrabou J. Impacts on coralligenous outcrop biodiversity of a dramatic coastal storm. PLoS One. 2013;8(1):1–13 (e53742).Google Scholar
  85. Thibaut T, Pinedo S, Torras X, Ballesteros E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albères coast (France, North-western Mediterranean). Mar Pollut Bull. 2005;50:1472–89.PubMedCrossRefGoogle Scholar
  86. Thibaut T, Blanfuné A, Boudouresque CF, Verlaque M. Decline and local extinction of Fucales in the French Riviera: the harbinger of future extinctions? Mediterr Mar Sci. 2015;16(1):206–24.Google Scholar
  87. Thibaut T, Blanfuné A, Boudouresque CF, Cottalorda JM, Hereu B, Susini ML, Verlaque M. Unexpected temporal stability of Cystoseira and Sargassum forests in Port-Cros, one of the oldest Mediterranean marine National Parks. Cryptogam Algol. 2016;37(1):61–90.CrossRefGoogle Scholar
  88. Tribollet A, Payri C. Bioerosion of the coralline alga Hydrolithon onkodes by microborers in coral reefs of Moorea, French Polynesia. Oceanol Acta. 2001;24(4):329–42.CrossRefGoogle Scholar
  89. Tribollet A, Decherf G, Hutchings PA, Peyrot-Clausade M. Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): importance of microborers. Coral Reefs. 2002;21:424–32.Google Scholar
  90. Tribollet A, Langdon C, Golubic S, Atkinson M. Endolithic microflora are major primary producers in dead carbonate substrates of Hawaiian coral reefs. J Phycol. 2006;42:292–303.CrossRefGoogle Scholar
  91. Vermeij MA, van Moorselaar I, Engelhard S, Hörnlein C, Vonk SM, Visser PM. The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS One. 2010;5(12):1–8 (e14312).CrossRefGoogle Scholar
  92. Vieira C, Thomas OP, Culioli G, Genta-Jouve G, Houlbreque F, Gaubert J, De Clerck O, Payri CE. Allelopathic interactions between the brown alga genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals. Sci Rep. 2016;6(18637):1–11.Google Scholar
  93. Virgilio M, Airoldi L, Abbiati M. Spatial and temporal variations of assemblages in a Mediterranean coralligenous reef and relationships with surface orientation. Coral Reefs. 2006;25(2):265–72.CrossRefGoogle Scholar
  94. Žuljević A, Peters AF, Nikolić V, Antolić B, Despalatović M, Cvitković I, Isajlović I, Mihanović H, Matijević S, Shewring DM, Canese S, Katsaros C, Küpper FC. The Mediterranean deep-water kelp Laminaria rodriguezii is an endangered species in the Adriatic Sea. Mar Biol. 2016;163:1–12.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Aix-Marseille University and Toulon University, Mediterranean Institute of Oceanography (MIO), CNRS/INSU/IRD UM 110MarseilleFrance

Personalised recommendations