Advertisement

Mesophotic Coral Ecosystems

  • Sam Kahng
  • Joshua M. Copus
  • Daniel Wagner
Living reference work entry

Abstract

Coral reefs are among the most biodiverse and productive ecosystems on the planet. However, our understanding of these ecosystems and their inhabitants has primarily been gleaned from shallow-water studies (<40 m), while light-dependent corals and the ecosystems they support extend much deeper (e.g., 150 m in some locations). In recent decades, coral reef ecosystems have substantially declined globally due to direct and indirect anthropogenic activities that differentially impact shallow-water habitats. This decline has led to the suggestion that surface-oriented stressors and disturbances may be mediated by depth. The role of deeper coral reef ecosystems, called mesophotic coral ecosystems (MCEs), as refugia for shallow-water species has fueled new investigations into this realm facilitated in part by advances in diving technology and remote observation platforms. The increasing access to these poorly studied ecosystems is revealing new insights into the biodiversity of MCEs as well as that of shallow coral reefs. The upper mesophotic community is largely an extension of the shallow-water coral reef community, much of the flora and fauna are shared across these depths. However, there is a transition with increasing depth to a lower mesophotic community dominated by flora and fauna that are largely endemic to this zone. Investigations are also expanding depth and geographic ranges for many species, and new species are being discovered regularly in MCEs. However, caution must be taken when generalizing due to the geographically and numerically limited nature of these studies.

Keywords

Mesophotic coral ecosystems (MCEs) Biodiversity Deep coral reef Community structure Endemism Depth refugia 

References

  1. Agegian CR, Abbott IA. Deep water macroalgal communities: a comparison between Penguin Bank (Hawaii) and Johnston Atoll. Proc Fifth Int Coral Reef Symp. 1985;5:47–50.Google Scholar
  2. Andradi-Brown DA, Gress E, Wright G, Exton DA, Rogers AD. Reef fish community biomass and trophic structure changes across shallow to upper-Mesophotic reefs in the mesoamerican barrier reef, Caribbean. PLoS One. 2016;11(6):e0156641.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aponte NE, Ballantine DL. Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep-Sea Res I. 2001;48:2185–94.CrossRefGoogle Scholar
  4. Baker E, Puglise K, Harris P. Mesophotic coral ecosystems – a lifeboat for coral reefs. Nairobi and Arendal: The United Nations Environment Programme and GRID-Arendal; 2016. p. 98.Google Scholar
  5. Baldwin CC, Robertson DR. A new Liopropoma sea bass (Serranidae, Epinephelinae, Liopropomini) from deep reefs off Curaçao, southern Caribbean, with comments on depth distributions of western Atlantic liopropomins. ZooKeys. 2014;409:71–92.CrossRefGoogle Scholar
  6. Baldwin CC, Robertson DR. A new, mesophotic Coryphopterus goby (Teleostei, Gobiidae) from the southern Caribbean, with comments on relationships and depth distributions within the genus. ZooKeys. 2015;513:123–42.CrossRefGoogle Scholar
  7. Baldwin CC, Robertson DR, Nonaka A, Tornabene L. Two new deep-reef basslets (Teleostei, Grammatidae, Lipogramma), with comments on the eco-evolutionary relationships of the genus. ZooKeys. 2016;638:45.CrossRefGoogle Scholar
  8. Ballantine D, Appeldoorn R, Yoshioka P, Weil E, Armstrong R, Garcia J, Otero E, Pagan F, Sherman C, Hernandez-Delgado E. Biology and ecology of Puerto Rican Coral Reefs. In: Riegl BM, Dodge RE, editors. Coral reefs of the USA. Dordrecht: Springer; 2008. p. 375–406.CrossRefGoogle Scholar
  9. Ballantine DL, Ruíz H, Norris JN. Notes on the benthic marine algae of Puerto Rico, XI: new records including new Meredithia (Kallymeniaceae, Rhodophyta) species. Bot Mar. 2015;58:355–65.CrossRefGoogle Scholar
  10. Bejarano I, Appeldoorn R, Nemeth M. Fishes associated with mesophotic coral ecosystems in La Parguera, Puerto Rico. Coral Reefs. 2014;33:313–28.CrossRefGoogle Scholar
  11. Bellwood DR, Hughes TP, Folke C, Nyström M. Confronting the coral reef crisis. Nature. 2004;429:827–33.PubMedCrossRefGoogle Scholar
  12. Blyth-Skyrme VJ, Rooney JJ, Parrish FA, Boland. RC (2013) Mesophotic coral ecosystems – potential candidates as essential fish habitat and habitat areas of particular concern. Pacific Islands Fishery Science Center, National Marine Fishery Science Center Administrative Report H-13-02 53pGoogle Scholar
  13. Bo M, Baker AC, Gaino E, Wirshing HH, Scoccia F, Bavestrello G. First description of algal mutualistic endosymbiosis in a black coral (Anthozoa: Antipatharia). Mar Ecol Prog Ser. 2011;435:1–11.CrossRefGoogle Scholar
  14. Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O. Assessing the deep reef refugia hypothesis: focus on Caribbean reefs. Coral Reefs. 2010a;29:309–27.CrossRefGoogle Scholar
  15. Bongaerts P, Riginos C, Ridgway T, Sampayo EM, van Oppen MJH, Englebert N, Vermeulen F, Hoegh-Guldberg O. Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PLoS One. 2010b;5:e10871.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bongaerts P, Sampayo EM, Bridge TC, Ridgway T, Vermeulen F, Englebert N, Webster JM, Hoegh-Guldberg O. Symbiodinium diversity in mesophotic coral communities on the Great Barrier Reef: a first assessment. Mar Ecol Prog Ser. 2011a;439:117–26.CrossRefGoogle Scholar
  17. Bongaerts P, Bridge TC, Kline D, Muir P, Wallace C, Beaman R, Hoegh-Guldberg O. Mesophotic coral ecosystems on the walls of Coral Sea atolls. Coral Reefs. 2011b;30:335.CrossRefGoogle Scholar
  18. Bongaerts P, Riginos C, Hay K, van Oppen M, Hoegh-Guldberg O, Dove S. Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats. BMC Evol Biol. 2011c;11:303.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bongaerts P, Frade P, Ogier J, Hay K, van Bleijswijk J, Englebert N, Vermeij M, Bak R, Visser P, Hoegh-Guldberg O. Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60 m) on a Caribbean reef. BMC Evol Biol. 2013;13:205.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bongaerts P, Frade PR, Hay KB, Englebert N, Latijnhouwers KRW, Bak RPM, Vermeij MJA, Hoegh-Guldberg O. Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-endosymbiont community. Sci Report. 2015a;5:1–9.CrossRefGoogle Scholar
  21. Bongaerts P, Carmichael M, Hay KB, Tonk L, Frade PR, Hoegh-Guldberg O. Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species. R Soc Open Sci. 2015b;2:140297.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bridge T, Guinotte J. Mesophotic coral reef ecosystems in the Great Barrier Reef World Heritage area: their potential distribution and possible role as refugia from disturbance. Townsville: Great Barrier Reef Marine Park Authority; 2013.Google Scholar
  23. Bridge TCL, Fabricius KE, Bongaerts P, Wallace CC, Muir PR, Done TJ, Webster JM. Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs. 2012a;31:179–89.CrossRefGoogle Scholar
  24. Bridge T, Scott A, Steinberg D. Abundance and diversity of anemonefishes and their host sea anemones at two mesophotic sites on the Great Barrier Reef, Australia. Coral Reefs. 2012b;31:1057–62.CrossRefGoogle Scholar
  25. Bridge TC, Luiz OJ, Coleman RR, Kane CN, Kosaki RK. Ecological and morphological traits predict depth-generalist fishes on coral reefs. Proc R Soc B. 2016;283:20152332.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Brokovich E, Einbinder S, Shashar N, Kiflawi M, Kark S. Descending to the twilight-zone: changes in coral reef fish assemblages along a depth gradient down to 65 m. Mar Ecol Prog Ser. 2008;371:253–62.CrossRefGoogle Scholar
  27. Brokovich E, Ayalon I, Einbinder S, Segev N, Shaked Y, Genin A, Kark S, Kiflawi M (2010) Grazing pressure on coral reefs decreases across a wide depth gradient in the Gulf of Aqaba, Red Sea. Marine Ecology Progress Series 399:69–80Google Scholar
  28. Bryan DR, Kilfoyle K, Gilmore RG, Spieler RE. Characterization of the mesophotic reef fish community in south Florida, USA. J Appl Ichthyol. 2013;29:108–17.CrossRefGoogle Scholar
  29. Chan Y, Pochon X, Fisher MA, Wagner D, Concepcion GT, Kahng SE, Toonen RJ, Gates RD. Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67-100 m depths) coral Leptoseris. BMC Ecol. 2009;9:21. doi:10.1186/1472-6785-9-21.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cheney DP, Dyer JP. Deep-water benthic algae of the Florida Middle Ground. Mar Biol. 1974;27:185–90.CrossRefGoogle Scholar
  31. Colin PL. Observation and collection of deep-reef fishes off the coasts of Jamaica and British Honduras (Belize). Mar Biol. 1974;24:29–38.CrossRefGoogle Scholar
  32. Cooper TF, Ulstrup KE, Dandan SS, Heyward AJ, Kühl M, Muirhead A, O’Leary RA, Ziersen BE, Van Oppen MJ. Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc R Soc B Biol Sci. 2011;278:1840–50.CrossRefGoogle Scholar
  33. Copus JM, Pyle RL, Earle JL. Neoniphon pencei, a new species of holocentrid (Teleostei: Beryciformes) from Rarotonga, Cook Islands. Biodiv Data J. 2015a;3(2):e4180.CrossRefGoogle Scholar
  34. Copus JM, Ka’apu-Lyons CA, Pyle RL. Luzonichthys seaver, a new species of Anthiinae (Perciformes, Serranidae) from Pohnpei, Micronesia. Bio Data J. 2015b;3:e4902.Google Scholar
  35. Culter J, Ritchie K, Earle S, Guggenheim D, Halley R, Ciembronowicz K, Hine A, Jarrett B, Locker S, Jaap W. Pulley reef: a deep photosynthetic coral reef on the West Florida Shelf, USA. Coral Reefs. 2006;25:228.CrossRefGoogle Scholar
  36. Drew AE, Abel KM. Studies on Halimeda: I. The distribution and species composition of Halimeda meadows throughout the Great Barrier Reef Province. Coral Reefs. 1988;6:195–205.CrossRefGoogle Scholar
  37. Dring MJ. Chromatic adaption of photosynthesis in benthic marine algae: an examination of its ecological significance using a theoretical model. Limnol Oceanogr. 1981;26:271–84.CrossRefGoogle Scholar
  38. Easton, EE, Sellanes J, Gaymer CF, Morales N, Gorny M, Berkenpas E. Diversity of deep-sea fishes of the Easter Island Ecoregion. Deep Sea Res Part II: Top Studies in Oceanogr. 2016. doi: 10.1016/j.dsr2.2016.12.006. http://www.sciencedirect.com/science/article/pii/S0967064516303903
  39. Englebert N, Bongaerts P, Muir P, Hay K, Hoegh-Guldberg O (2015) Deepest zooxanthellate corals of the Great Barrier Reef and Coral Sea. Marine Biodiversity 45:1–2Google Scholar
  40. Enriquez S, Méndez ER, Iglesias-Prieto R. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr. 2005;50:1025–32.CrossRefGoogle Scholar
  41. Eyal G, Eyal-Shaham L, Cohen I, Tamir R, Ben-Zvi O, Sinniger F, Loya Y. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs. 2016;35:91–102.CrossRefGoogle Scholar
  42. Eyal-Shaham L, Eyal G, Tamir R, Loya Y. Reproduction, abundance and survivorship of two Alveopora spp. in the mesophotic reefs of Eilat, Red Sea. Sci Report. 2016;6:20964.CrossRefGoogle Scholar
  43. Feitoza BM, Rosa RS, Rocha LA. Ecology and zoogeography of deep-reef fishes in northeastern Brazil. Bull Mar Sci. 2005;76:725–42.Google Scholar
  44. Fong P, Paul VJ. Coral reef algae. In: Dubinksy Z, Stambler N, editors. Coral reefs: an ecosystem in transition. Dordrecht: Springer; 2011. p. 241–72.CrossRefGoogle Scholar
  45. Foster MS. Rhodoliths: between rocks and soft places. J Phycol. 2001;37:659–67.CrossRefGoogle Scholar
  46. Foster MS, Gilberto Filho MA, Kamenos NA, Riosmena-Rodríguez R, Steller DL. Rhodoliths and rhodolith beds. In: Lang MA, Marinelli RL, Roberts SJ, Taylor PR, editors. Research and dscoveries: the revolution of science through SCUBA, Smithsonian contributions to the marine sciences number39 Washington, DC: Smithsonian Institution Scholarly Press; 2013. p. 143–55.Google Scholar
  47. Frade PR, De Jongh F, Vermeulen F, Van Bleijswijk J, Bak RPM. Variation in symbiont distribution between closely related coral species over large depth ranges. Mol Ecol. 2008b;17:691–703.PubMedCrossRefGoogle Scholar
  48. Frade PR, Englebert N, Faria J, Visser PM, Bak RPM. Distribution and photobiology of Symbiodinium types in different light environments for three colour morphs of the coral Madracis pharensis: is there more to it than total irradiance? Coral Reefs. 2008c;27:913–25.CrossRefGoogle Scholar
  49. Frade P, Bongaerts P, Winkelhagen A, Tonk L, Bak R. In situ photobiology of corals over large depth ranges: a multivariate analysis on the roles of environment, host, and algal symbiont. Limnol Oceanogr. 2008a;53:2711–23.CrossRefGoogle Scholar
  50. Fricke HW, Schuhmacher H. The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). Mar Ecol. 1983;4:163–94.CrossRefGoogle Scholar
  51. Fricke HW, Vareschi E, Schlichter D. Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia. 1987;73:371–81.PubMedCrossRefGoogle Scholar
  52. Friedlander AM, Caselle JE, Ballesteros E, Brown EK, Turchik A, Sala E. The real bounty: marine biodiversity in the Pitcairn Islands. PLoS One. 2014;9:e100142.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Fukunaga A, Kosaki RK, Wagner D, Kane C. Structure of mesophotic reef fish assemblages in the Northwestern Hawaiian Archipelago. PLoS One. 2016;11(7):e0157861.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gaffey SJ. Spectral reflectance of carbonate minerals in the visible and near-infrared (0.35-2.55 microns): calcite, aragonite, and dolomite. Am Mineral. 1986;71:151–62.Google Scholar
  55. Garcia-Sais JR. Reef habitats and associated sessile-benthic and fish assemblages across a euphotic–mesophotic depth gradient in Isla Desecheo, Puerto Rico. Coral Reefs. 2010;29(2):277–88.CrossRefGoogle Scholar
  56. Glynn PW. Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol. 1996;2:495–509.CrossRefGoogle Scholar
  57. Goreau TF, Land LS. Fore-reef morphology and depositional processes, North Jamaica. In: LF LP, editor. Reefs in time and space. Tulsa: Society of Economic Paleontologists and Mineralogists; 1974. p. 77–89.CrossRefGoogle Scholar
  58. Goulet TL. Most corals may not change their symbionts. Mar Ecol Prog Ser. 2006;321:1–7.CrossRefGoogle Scholar
  59. Grigg RW. Ecological studies of black coral in Hawaii. Pac Sci. 1965;19:244–60.Google Scholar
  60. Hanisak MD, Blair SM. The deep-water macroalgal community of the East Florida continental shelf (USA). Helgoländer Meeresun. 1988;42:133–63.CrossRefGoogle Scholar
  61. Hennige SJ, Smith DJ, Walsh S-J, McGinley MP, Warner ME, Suggett DJ. Acclimation and adaptation of scleractinian coral communities along environmental gradients within an Indonesian reef system. J Exp Mar Biol Ecol. 2010;391:143–52.CrossRefGoogle Scholar
  62. Hillis-Colinvaux L. Halimeda growth and diversity on the deep fore-reef of Enewetak Atoll. Coral Reefs. 1986a;5:19–21.CrossRefGoogle Scholar
  63. Hillis-Colinvaux L. Deep water populations of Halimeda in the economy of an Atoll. Bull Mar Sci. 1986b;38:155–69.Google Scholar
  64. Hoeksema BW, Bongaerts P, Baldwin CC. High coral cover at lower mesophotic depths: a dense Agaricia community at the leeward side of Curaçao Dutch Caribbean. Marine Biodiversity 2016; pp. 1–4. http://link.springer.com/article/10.1007/s12526-015-0431-8
  65. Hoogenboom MO, Connolly SR, Anthony KRN. Interactions between morphological and physiological plasticity optimize energy acquisition in corals. Ecology. 2008;89:1144–54.PubMedCrossRefGoogle Scholar
  66. Iglesias-Prieto R, Trench RK. Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Mar Ecol Prog Ser. 1994;113:163–75.CrossRefGoogle Scholar
  67. Iglesias-Prieto R, Beltran V, LaJeunesse T, Reyes-Bonilla H, Thome P. Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc London, Ser B. 2004;271:1757–63.CrossRefGoogle Scholar
  68. Kahng SE, Kelley C. Vertical zonation of habitat forming benthic species on a deep photosynthetic reef (50-140 m) in the Auʿau Channel, Hawaii. Coral Reefs. 2007;26:679–87.CrossRefGoogle Scholar
  69. Kahng SE, Maragos JE. The deepest zooxanthellate, scleractinian corals in the world? Coral Reefs. 2006;25:254.CrossRefGoogle Scholar
  70. Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ. Community ecology of mesophotic coral reef ecosystems. Coral Reefs. 2010;29:255–75.CrossRefGoogle Scholar
  71. Kahng SE, Wagner D, Lantz C, Vetter O, Gove J, Merrifield M. Temperature related depth limits of warm-water corals. In Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia:9C; 2012.Google Scholar
  72. Kahng SE, Copus J, Wagner D. Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Curr Opin Environ Sustain. 2014;7:72–81.CrossRefGoogle Scholar
  73. Kane C, Kosaki RK, Wagner D. High levels of mesophotic reef fish endemism in the Northwestern Hawaiian Archipelago. Bull Mar Sci. 2014;90(2):693–703.CrossRefGoogle Scholar
  74. Keesing JK, Usher KM, Fromont J. First record of photosynthetic cyanobacterial symbionts from mesophotic temperate sponges. Mar Freshw Res. 2012;63:403–8.CrossRefGoogle Scholar
  75. Kinzie R. The ecology of the gorgonians (Cnidaria, Octocorallia) of Discovery Bay, Jamaica. PhD thesis, Yale University; (1970). p. 107.Google Scholar
  76. Kinzie RA. The zonation of West Indian gorgonians. Bull Mar Sci. 1973;23:93–155.Google Scholar
  77. Kirk JTO. Light and photosynthesis in aquatic ecosystems. Cambridge: Cambridge University Press; 2011.Google Scholar
  78. Kleypas JA, McManus JW, Menez LAB. Environmental limits to coral reef development: where do we draw the line? Am Zool. 1999;39:146–59.CrossRefGoogle Scholar
  79. Kosaki RK, Pyle R, Randall JE, Irons DK. New records of fishes from Johnston Atoll, with notes on biogeography. Pac Sci. 1991;45:186–203.Google Scholar
  80. Kosaki RK, Pyle RL, Leonard JC, Hauk BB, Whitton RK, Wagner D. 100% endemism in mesophotic reef fish assemblages at Kure Atoll Hawaiian Islands, Marine Biodiversity. 2016. pp. 1–2. http://link.springer.com/article/10.1007/s12526-016-0510-5
  81. Kühlmann D. Composition and ecology of deep-water coral associations. Helgol Mar Res. 1983;36:183–204.Google Scholar
  82. Lane DJ, Hoeksema BW. Mesophotic mushroom coral records at Brunei Darussalam support westward extension of the coral triangle to the South China sea waters of Northwest Borneo. Raffles Bull Zool. 2016;64:204–12.Google Scholar
  83. Lee RE. Phycology. Cambridge: Cambridge University Press; 2008.CrossRefGoogle Scholar
  84. Lehnert H, Fischer H. Distribution patterns of sponges and corals down to 107 m off North Jamaica. Mem Qld Mus. 1999;44:307–16.Google Scholar
  85. Leichter JJ, Stokes MD, Genovese SJ. Deep water macroalgal communities adjacent to the Florida Keys reef tract. Mar Ecol Prog Ser. 2008;356:123–38.CrossRefGoogle Scholar
  86. Lesser MP, Slattery M. Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions. 2011;13(8):1855–68.CrossRefGoogle Scholar
  87. Lesser M, Slattery M, Stat M, Ojimi M, Gates R, Grottoli A. Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology. 2010;91:990–1003.PubMedCrossRefGoogle Scholar
  88. Lindfield SJ, Harvey ES, Halford AR, McIlwain JL. Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs. 2016;35:125–37.CrossRefGoogle Scholar
  89. Linklater M. Past and present coral distribution at the latitudinal limit of reef development, southwest Pacific Ocean. PhD thesis, University of Wollongong; (2016). p. 227.Google Scholar
  90. Linklater M, Carroll AG, Hamylton SM, Jordan AR, Brooke BP, Nichol SL, Woodroffe CD. High coral cover on a mesophotic, subtropical island platform at the limits of coral reef growth. Cont Shelf Res. 2016;130:34–46.CrossRefGoogle Scholar
  91. Littler MM, Littler DS. Bloom of the giant Anadyomene gigantondictyon sp. nov. (Anadyomene, Cladophorales) from the outer sloe (25-50 m) of the Belize Barrier Reef. J Phycol. 2012;48:60–3.PubMedCrossRefGoogle Scholar
  92. Littler MM, Littler DS, Blair SM, Norris JN. Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity. Deep-Sea Res. 1986;33:881–92.CrossRefGoogle Scholar
  93. Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R. Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs. 2016;35:1–9.CrossRefGoogle Scholar
  94. Luck DG, Forsman ZH, Toonen RJ, Leicht SJ, Kahng SE. Polyphyly and hidden species among Hawaiʻi’s dominant mesophotic coral genera, Leptoseris and Pavona (Scleractinia: Agariciidae). PeerJ. 2013;1:e132.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Magalhães GM, Amado-Filho GM, Rosa MR, de Moura RL, Brasileiro PS, de Moraes FC, Francini-Filho RB, Pereira-Filho GH. Changes in benthic communities along a 0–60 m depth gradient in the remote St. Peter and St. Paul Archipelago (Mid-Atlantic Ridge, Brazil). Bull Mar Sci. 2015;91(3):377–96.CrossRefGoogle Scholar
  96. Maragos JE, Jokiel P. Reef corals of Johnston Atoll: one of the world’s most isolated reefs. Coral Reefs. 1986;4:141–50.CrossRefGoogle Scholar
  97. Markager S, Sand-Jensen K. Light requirements and depth zonation of marine macroalgae. Mar Ecol Prog Ser. 1992;88:83–92.CrossRefGoogle Scholar
  98. Mass T, Einbinder S, Brokovich E, Shashar N, Vago R, Erez J, Dubinsky Z. Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser. 2007;334:93–102.CrossRefGoogle Scholar
  99. Muir P, Wallace C, Bridge TC, Bongaerts P. Diverse staghorn coral fauna on the mesophotic reefs of north-east Australia. PLoS One. 2015;10:e0117933.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Nir O, Gruber D, Einbinder S, Kark S, Tchernov D. Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef. Coral Reefs. 2011;30:1089–100.CrossRefGoogle Scholar
  101. Ohlhorst SL, Liddell WD. The effect of substrate microtopography on reef community structure 60-120 m. Proc Sixth Int Coral Reef Symp. 1988;3:355–60.Google Scholar
  102. Papastamatiou Y, Meyer CG, Kosaki RK, Wallsgrove NJ, Popp BN. Movements and foraging of predators associated with mesophotic coral reefs and their potential for linking ecological habitats. Mar Ecol Prog Ser. 2015;521:155–70.CrossRefGoogle Scholar
  103. Parrish FA, Bolland RC. Habitat and reef-fish assemblages of banks in the Northwestern Hawaiian Islands. Mar Biol. 2004;144:1065–73.CrossRefGoogle Scholar
  104. Pawlik JR, McMurray SE, Erwin P, Zea S. No evidence for food limitation of Caribbean reef sponges: reply to Slattery & Lesser (2015). Mar Ecol Prog Ser. 2015a;527:281–4.CrossRefGoogle Scholar
  105. Pawlik JR, McMurray SE, Erwin P, Zea S. A review of evidence for food-limitation of sponges on Caribbean reefs. Mar Ecol Prog Ser. 2015b;519:265–83.CrossRefGoogle Scholar
  106. Pearson R, Stevens T. Distinct cross-shelf gradient in mesophotic reef fish assemblages in subtropical eastern Australia. Mar Ecol Prog Ser. 2015;532:185–96.CrossRefGoogle Scholar
  107. Peyton KA Aquatic invasive species impacts in Hawaiian soft sediment habitats. PhD thesis, University of Hawaii at Manoa; (2009). p. 138.Google Scholar
  108. Pinheiro HT, Mazzei E, Moura RL, Amado-Filho GM, Carvalho-Filho A, Braga AC, Costa PA, Ferreira BP, Ferreira CEL, Floeter SR. Fish biodiversity of the Vitória-Trindade Seamount Chain, southwestern Atlantic: an updated database. PLoS One. 2015;10:e0118180.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Pinheiro HT, Goodbody-Gringley G, Jessup ME, Shepherd B, Chequer AD, Rocha LA. Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations. Coral Reefs. 2016;35:139–51.CrossRefGoogle Scholar
  110. Pochon X, Forsman Z, Spalding H, Padilla-Gamiño J, Smith C, Gates R. Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawai’i. R Soc Open Sci. 2015;2:140351.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Porter JW. Ecology and composition of deep reef communities off the Tongue of the Ocean, Bahama Island. Discovery. 1973;9:3–12.Google Scholar
  112. Pyle RL. Exploring deep coral reefs: how much biodiversity are we missing? Glob Biodiv. 1996;6:3–7.Google Scholar
  113. Pyle RL. Assessing undiscovered fish biodiversity on deep coral reefs using advanced self-contained diving technology. Mar Technol Soc. 2000;34:82–91.CrossRefGoogle Scholar
  114. Pyle RL, Kosaki RK. Prognathodes basabei, a new species of butterflyfish (Perciformes, Chaetodontidae) from the Hawaiian Archipelago. ZooKeys. 2016;614:137.CrossRefGoogle Scholar
  115. Pyle RL, Earle JL, Greene BD. Five new species of the damselfish genus Chromis (Perciformes: Labroidei: Pomacentridae) from deep coral reefs in the tropical western Pacific. Zootaxa. 2008;1671:3–31.Google Scholar
  116. Pyle RL, Boland R, Bolick H, Bowen BW, Bradley CJ, Kane C, Kosaki RK, Langston R, Longenecker K, Montgomery A, Parrish FA, Popp BN, Rooney J, Smith CM, Wagner D, Spalding HL. A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ. 2016a;4:e2475.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Pyle RL, Greene BD, Kosaki RK. Tosanoides obama, a new basslet (Perciformes, Percoidei, Serranidae) from deep coral reefs in the Northwest Hawaiian Islands. Zoologica. 2016b;641:165–81.Google Scholar
  118. Rivero-Calle S Ecological aspects of sponges in mesophotic coral ecosystems. MS thesis. University of Puerto Rico; (2010). p. 85.Google Scholar
  119. Rosa MR, Alves AC, Medeiros DV, Coni EOC, Ferreira CM, Ferreira BP, de Souza RR, Amado-Filho GM, Pereira-Filho GH, de Moura RL. Mesophotic reef fish assemblages of the remote St. Peter and St. Paul’s Archipelago, Mid-Atlantic Ridge, Brazil. Coral Reefs. 2015;35:113–23.CrossRefGoogle Scholar
  120. Rowan R, Knowlton N. Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci. 1995;92:2850–3.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Runcie JW, Gurgel CF, Mcdermid KJ. In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. Eur J Phycol. 2008;43:377–88.CrossRefGoogle Scholar
  122. Sanchez JA. Black coral-octocoral distribution patterns on Imelda Bank, a deep-water reef, Colombia, Caribbean Sea. Bull Mar Sci. 1999;65:215–25.Google Scholar
  123. Sanchez JA, Zea S, Diaz JM. Patterns of octocoral and black cora distribution in the oceanic barrier reef-complex of Providencia Island, Southwestern Caribbean. Caribb J Sci. 1998;34:250–64.Google Scholar
  124. Schizas N, Lucas M, Weil E (2012) Genetic connectivity of Symbiodinium and its coral host Agaricia lamarck 12th International Coral Reef Symposium, Cairns.Google Scholar
  125. Shashar N, Stambler N. Endolithic algae within corals – life in an extreme environment. J Exp Mar Biol Ecol. 1992;163:277–86.CrossRefGoogle Scholar
  126. Simon T, Pinheiro HT, Moura R, Carvalho-Filho A, Rocha LA, Martins AS, Mazzei E, Francini-Filho RB, Amado-Filho GM, Joyeux JC. Mesophotic fishes of the Abrolhos Shelf, the largest reef ecosystem in the South Atlantic. J Fish Biol. 2016;89(1):990–1001. doi:10.1111/jfb.12967.PubMedCrossRefGoogle Scholar
  127. Slattery M, Lesser MP. Trophic ecology of sponges from shallow to mesophotic depths (3 to 150 m): comment on Pawlik et al.(2015). Mar Ecol Prog Ser. 2015;527:275–9.CrossRefGoogle Scholar
  128. Spalding H Ecology of mesophotic macroalgae and Halimeda kanaloana meadows in the Main Hawaiian Islands. PhD thesis, University of Hawaii; (2012). p. 199.Google Scholar
  129. Spalding HL, Conklin KY, Smith CM, O’Kelly CJ, Sherwood AR. New Ulvaceae (Ulvophyceae, Chlorophyta) from mesophotic ecosystems across the Hawaiian Archipelago. J Phycol. 2016;52:40–53.PubMedCrossRefGoogle Scholar
  130. Tenggardjaja KA, Bowen BW, Bernardi G. Vertical and horizontal genetic connectivity in Chromis verater, an endemic damselfish found on shallow and mesophotic reefs in the Hawaiian Archipelago and adjacent Johnston Atoll. PLoS One. 2014;9:e115493.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution. 2014;68:352–67.PubMedCrossRefGoogle Scholar
  132. Thresher RE, Colin PL. Trophic structure, diversity and abundance of fishes of the deep reef (30-300 m) at Enewetak, Marshall Islands. Bull Mar Sci. 1986;38:253–72.Google Scholar
  133. Toller WW, Rowan R, Knowlton N. Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull. 2001;201:348–59.PubMedCrossRefGoogle Scholar
  134. Tornabene L, Robertson DR, Baldwin CC. Varicus lacerta, a new species of goby (Teleostei, Gobiidae, Gobiosomatini, Nes subgroup) from a mesophotic reef in the southern Caribbean. ZooKeys. 2016;596:143.CrossRefGoogle Scholar
  135. Van den Hoek C, Breeman AM, Bak RPM, van Buurt G. The distribution of algae, corals, and gorgonians in relation to depth, light attenuation, water movement and grazing pressure in the fringing reef of Curacao, Netherlands Antilles. Aquat Bot. 1978;5:1–46.CrossRefGoogle Scholar
  136. Vaz AC, Paris CB, Olascoaga MJ, Kourafalou VH, Kang H, Reed JK. The perfect storm: match-mismatch of bio-physical events drives larval reef fish connectivity between Pulley Ridge mesophotic reef and the Florida Keys. Cont Shelf Res. 2016;125:136–46.CrossRefGoogle Scholar
  137. Wagner D. The spatial distribution of shallow-water (< 150 m) black corals (Cnidaria: Antipatharia) in the Hawaiian Archipelago. Mar Biodiv Rec. 2015;8:e54.CrossRefGoogle Scholar
  138. Wagner D, Pochon X, Irwin L, Toonen RJ, Gates RD. Azooxanthellate? Most Hawaiian black corals contain Symbiodinium. Proc R Soc B Biol Sci. 2011;278:1323–8.CrossRefGoogle Scholar
  139. Wagner D, Luck DG, Toonen RJ. The biology and ecology of black corals (Cnidaria: Anthozoa: Hexacorallia: Antipatharia). Adv Mar Biol. 2012;63:67–132.PubMedCrossRefGoogle Scholar
  140. Wagner D, Kosaki RK, Spalding HL, Whitton RK, Pyle RL, Sherwood AR, Tsuda RT, Calcinai B. Mesophotic surveys of the flora and fauna at Johnston Atoll, Central Pacific Ocean. Mar Biodiv Rec. 2014;7:e68.CrossRefGoogle Scholar
  141. Wilkinson CR, Cheshire AC. Comparisons of sponge populations across the Barrier Reefs of Australia and Belize: evidence for higher productivity in the Caribbean. Mar ecol prog ser Oldendorf. 1990;67:285–94.CrossRefGoogle Scholar
  142. Ziegler M, Roder CM, Büchel C, Voolstra CR. Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology. Front Mar Sci. 2015;2:4.CrossRefGoogle Scholar
  143. Zlatarski VN. Scleractinians of Yucatan Peninsula, Mexico: results of 1983-1984 investigation. CICIMAR Oceanides. 2007;22:45–116.Google Scholar
  144. Zlatarski VN, Estalella MN. Les Scléractiniaires de Cuba avec des données sur les organismes associés. Editions Académie bulgare des Sciences. Bulgarie: Sofia; 1982.Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Hawaii Pacific UniversityWaimanaloUSA
  2. 2.Department of BiologyUniversity of Hawaii at Manoa, Hawaii Institute of Marine BiologyKaneoheUSA
  3. 3.National Oceanic and Atmospheric AdministrationNational Centers for Coastal Ocean ScienceCharlestonUSA

Personalised recommendations