Advertisement

Animal Forests in the Chilean Fjords: Discoveries, Perspectives and Threats in Shallow and Deep Waters

  • Günter Försterra
  • Verena Häussermann
  • Jürgen Laudien
Living reference work entry

Abstract

The Chilean fjord region, situated between 42 and 56° S, forms one of the most ragged shorelines and belongs to the ecologically and biogeographically least understood marine regions of the world. A labyrinth of fjords, channels, and islands extends over 240,000 km2 and creates a coastline of more than 80,000 km. Due to strong abiotic gradients, numerous habitats are created, which are further diversified by temporal dynamics (tidal cycle, seasonal changes in precipitation, temperature, radiation, etc.). The region is a biodiversity hotspot hosting unique and fragile ecosystems. Among the species living here, several are species forming habitats in the ecosystem. These organisms can reach high densities conforming the so-called marine animal forests. Examples are marine animal forests dominated by cold-water stony corals, gorgonians, hydrocorals, brachiopods, polychaetes, giant barnacles, sponges, and ascidians. Many of these communities have been discovered only recently. There is also a singular characteristic in this area: exceptionally low pH levels of the waters of Patagonian fjords provide the opportunity to study calcifying organisms in an environment with pH conditions in the same range as the ones predicted by the IPCC for the world oceans in 2100. Despite the scarce ecological and biogeographical knowledge of this area, it encounters an unparalleled economic development including high-impact industry-scale salmonid farming, ambitious infrastructure and industrialization projects, and increasing extractive activities. Baseline research on the abiotic and biotic environment of the region is needed to reach sustainability in the use of the marine resources. Management plans including the establishment of marine protected areas to preserve benthic diversity and ecosystem services are urgently needed.

Keywords

Cold-water scleractinian coral bank Hydrocoral reef Mytilid bank Brachiopod bank Gorgonian forest Polychaete forest Giant barnacle forest Deepwater emergence Low pH Aquaculture Marine protected areas 

Notes

Acknowledgments

Our deepest thanks are expressed to all the assistants of the Huinay Scientific Field Station for their support along all these years during fieldwork and especially during the expeditions to explore the most remote sites of Chilean Patagonia. We also thank all the captains who were shipping us to dive sites in Comau Fjord, as well as throughout the Chilean fjord region, and all supporting crew members. We are grateful for all the help we received from the administrative staff of the Huinay Scientific Field Station and the staff from the Añihue Reserve. We are also very grateful for the scuba diving assistance from many scientific divers who came to Huinay from AWI or as interns. We also want to thank all our cooperating taxonomists without whom we could not have named all the mentioned species. Many thanks to Ulrich Pörschmann for designeing the maps (Figs. 2, 3) and to Francine Beaujot for English editing. David Bellhoff is acknowledged for compiling Fig. 15. Thanks to the reviewers and editors who helped to considerably improve the manuscript. This is publication no. 129 of the Huinay Scientific Field Station. Funding to VH was provided through Fondecyt project No. 1131039 and No. 1161699 and to GF through Fondecyt project No. 1150843.

References

  1. Arntz WE. Magellan-Antarctic: ecosystems that drifted apart. Summary review. In: Arntz WE, Ríos C, editors. Magellan-Antarctic: ecosystems that drifted apart. Madrid: Instituto de Ciencias del Mar, C.S.I.C; 1999.Google Scholar
  2. Atkinson JM, Cuet P. Possible effects of ocean acidification on coral reef biogeochemistry, topics for research. Mar Ecol Prog Ser. 2008;373:249–56.CrossRefGoogle Scholar
  3. Baumgarten S, Laudien J, Jantzen C, Häussermann V, Försterra G. Population structure, growth and production of a recent brachiopod from the Chilean fjord region. Mar Ecol. 2013;35(4):401–13.CrossRefGoogle Scholar
  4. Böhmer A. Response of the cold-water coral Desmophyllum dianthus to future CO2 concentration, Master thesis. Oldenburg: Alfred Wegener Institute Helmholtz Center for Polar and Marine Research and Carl von Ossietzky Universität. 2013.Google Scholar
  5. Brattström H, Johanssen A. Ecological and regional zoogeography of the marine benthic fauna of Chile. Report No. 49 of the Lund University Chile Expedition 1948–1949. Sarsia. 1983;68(4):289–339.CrossRefGoogle Scholar
  6. Breedy O, Cairns SD, Häussermann V. A new alcyonian octocoral (Cnidaria, Anthozoa, Octocorallia) from Chilean fjords. Zootaxa. 2015;3919(2):327–34.CrossRefPubMedGoogle Scholar
  7. Bruno JF, Petes LE, Harvell CD, Hettinger A. Nutrient enrichment can increase the severity of coral diseases. Ecol Lett. 2003;6:1056–61.CrossRefGoogle Scholar
  8. Buschmann AH, Riquelme VA, Hernández-González MC, Varela D, Jiménez JE, Henríquez LA, Vergara PA, Guíñez R, Filún L. A review of the impacts of salmonid farming on marine coastal ecosystems in the Southeast Pacific. ICES J Mar Sci: J Cons. 2006;63(7):1338–45.CrossRefGoogle Scholar
  9. Buschmann AH, Cabello F, Young K, Carvajal J, Varela DA, Henríquez L. Salmon aquaculture and coastal ecosystem health in Chile: analysis of regulations, environmental impacts and bioremediation systems. Ocean Coast Manag. 2009;52(5):243–9.CrossRefGoogle Scholar
  10. Cairns SD, Häussermann V, Försterra G. A review of the Scleractinia (Cnidaria: Anthozoa) of Chile, with the description of two new species. Zootaxa. 2005;1018:15–46.Google Scholar
  11. Caldeira K, Wickett ME. Oceanography: anthropogenic carbon and ocean pH. Nature. 2003; 425(6956):365Google Scholar
  12. Camus PA. Biogeografia marina de Chile continental. Rev Chil Hist Nat. 2001;74:587–617.CrossRefGoogle Scholar
  13. Castilla JC, Fernandez M. Small-scale benthic fisheries in Chile: on co-management and sustainable use of benthic invertebrates. Ecol Appl Suppl: Ecosyst Manag Sustain Mar Fish. 1998;8(1):124–32.CrossRefGoogle Scholar
  14. Constantz BR. Coral skeleton construction: a physiochemically dominated process. Palaios. 1986;1(2):152–7.CrossRefGoogle Scholar
  15. Dayton PK, England KW, Robson EA. An unusual sea anemone, Dactylanthus antarcticus (Clubb, 1908) (Order Ptychodactiaria) on gorgonians in Chilean fjords. 6th International Conference on Coelenterate Biology, The Leeuwenhorst, Noordwijkerhout. 1995. pp. 135–42.Google Scholar
  16. Diercks S. Abundance, growth and respiration rates of the cold-water scleractinian Tethocyathus endesa in the Chilean Fjord región. Master thesis. Kiel: Alfred Wegener Institute Helmholtz Center for Polar and Marine Research and Christian-Albrechts University. 2015.Google Scholar
  17. Fernández M, Jaramillo E, Marquet PA, Moreno CA, Navarrete SA, Ojeda PF, Valdovinos CR, Vasquez JA. Diversity, dynamics and biogeography of Chilean benthic nearshore ecosystems: an overview and guidelines for conservation. Rev Chil Hist Nat. 2000;73:797–830.CrossRefGoogle Scholar
  18. Fillinger L, Richter C. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold water coral thriving at low pH. Peer J. 2013;1:e194.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Försterra G. Ecological and biogeographical aspects of the Chilean Fjord Region. In: Häussermann V, Försterra G, editors. Marine benthic fauna of Chilean Patagonia. Puerto Montt: Nature in Focus; 2009.Google Scholar
  20. Försterra G, Häussermann V. Unusual symbiotic relationships between microendolithic phototrophic organisms and azooxanthellate cold-water corals from Chilean fjords. Mar Ecol Prog Ser. 2008;370:121–5.CrossRefGoogle Scholar
  21. Försterra G, Beuck L, Häussermann V, Freiwald A. Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (paleo)-bathymetric implications. In: Freiwald A, Roberts JM, editors. Cold-water corals and ecosystems. Berlin: Springer; 2005.Google Scholar
  22. Försterra G, Häussermann V, Lüter C. Mass occurrences of the recent brachiopod Magellania venosa (Terebratellidae) in the fjords Comau and Reñihue Chile. Mar Ecol. 2008;29(3):342–7.CrossRefGoogle Scholar
  23. Försterra G, Häussermann V, Laudien J, Jantzen C, Sellanes J, Muñoz P. Mass die-off of the cold-water coral Desmophyllum dianthus in the Chilean Patagonian Fjord region. Bull Mar Sci. 2014;90(3):895–9.CrossRefGoogle Scholar
  24. Fosså JH, Mortensen PB, Furevik DM. The deep-water coral Lophelia pertusa in Norwegian waters: distribution and fishery impacts. Hydrobiologia. 2002;471(1-3):1–12.CrossRefGoogle Scholar
  25. Galindo M. Aguas servidas siguen contaminando la bahía de Puerto Montt. [Internet]. 2014 [updated Feb9; cited 2016 Apr 26]. Available from: http://www.soychile.cl/Puerto-Montt/Sociedad/2014/02/09/230200/Aguas-servidas-siguen-contaminando-la-bahia-de-Puerto-Montt.aspx
  26. Gattuso JP, Allemand D, Frankignoulle M. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool. 1999;39:160–83.CrossRefGoogle Scholar
  27. Grange KR, Singleton RI, Richardson JR, Hill PJ, Main WD. Shallow rock-wall biological associations of some southern fiords of New Zealand. N Z J Zool. 1981;8(2):209–27.CrossRefGoogle Scholar
  28. Guinotte JM, Orr J, Cairns S, Freiwald A, Morgan L, George R. Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ. 2006;4:141–6.CrossRefGoogle Scholar
  29. Hardin G. The tragedy of the commons. Science. 1968;162(3859):1243–8.CrossRefPubMedGoogle Scholar
  30. Häussermann V. Biodiversity of Chilean sea anemones (Cnidaria: Anthozoa): distribution patterns and biogeographic implications; including new records for the fjord region. Investig Mar (Valparaiso). 2006;34(2):23–35.Google Scholar
  31. Häussermann V, Försterra G. Distribution patterns of Chilean shallow-water sea anemones (Cnidaria: Anthozoa: Actiniaria, Corallimorpharia); with a discussion of the taxonomic and zoogeographic relationships between the actinofauna of the South East Pacific, the South West Atlantic and Antarctica. In: Arntz WE, Lovrich GA, Thatje S, editors. The Magellan-Antarctic connection: links and frontiers at high southern latitudes. Scientia Marina 69 (Suppl 2). 2005.Google Scholar
  32. Häussermann V, Försterra G. Large assemblages of cold-water corals in Chile: a summary of recent findings and potential impacts. In: George RY, Cairns SD, editors. Conservation and adaptive management of seamount and deep-sea coral ecosystems. Miami: Rosenstiel School of Marine and Atmospheric Science, University of Miami; 2007a.Google Scholar
  33. Häussermann V, Försterra G. Extraordinary abundance of hydrocorals (Cnidaria, Hydrozoa, Stylasteridae) in shallow water of the Patagonian fjord region. Polar Biol. 2007b;30(4):487–92.CrossRefGoogle Scholar
  34. Häussermann V, Försterra G. Marine benthic fauna of Chilean Patagonia. Puerto Montt: Nature in Focus; 2009.Google Scholar
  35. Häussermann V, Försterra G. Vast reef-like accumulation of the hydrocoral Errina antarctica (Cnidaria, Hydrozoa) wiped out in Central Patagonia. Coral Reefs. 2014;33(1):29.CrossRefGoogle Scholar
  36. Häussermann V, Försterra G, Melzer RR, Meyer R. Gradual changes of benthic biodiversity in Comau fjord, Chilean Patagonia – lateral observations over a decade of taxonomic research. Spixiana. 2013;36(2):161–71.Google Scholar
  37. Haya K, Burridge LE, Davies IM, Ervik A. A review and assessment of environmental risk of chemicals used for the treatment of sea lice infestations of cultured salmon. Environ Chem. 2005;5(M):305–40.Google Scholar
  38. Iriarte JL, González HE, Nahuelhual L. Patagonian fjord ecosystems in Southern Chile as a highly vulnerable region: problems and needs. Ambio. 2010;39(7):463–6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Iriarte JL, Pantoja S, Iriarte L, Daneri G. Oceanographic processes in Chilean fjords of Patagonia: from small to large-scale studies. Prog Oceanogr. 2014;129:1–7.CrossRefGoogle Scholar
  40. Jackson JBC. Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am Nat. 1977;111(980):743–67.CrossRefGoogle Scholar
  41. Jantzen C, Häussermann V, Försterra G, Laudien J, Ardelan M, Maier S, Richter C. Occurrence of a cold-water coral along natural pH gradients (Patagonia, Chile). Mar Biol. 2013;160(10):2597–607.CrossRefGoogle Scholar
  42. Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. Oikos. 1994;69:373–86.CrossRefGoogle Scholar
  43. Krug PJ. Defense of benthic invertebrates against surface colonization by larvae: a chemical arms race. Prog Mol Subcell Biol. 2006;42:1–53.PubMedGoogle Scholar
  44. Lancellotti DA, Vásquez JA. Biogeographical patterns of benthic macroinvertebrates in the Southeastern Pacific littoral. J Biogeogr. 1999;26(5):1001–6.CrossRefGoogle Scholar
  45. López DA, López BA, Arriagada SE, González ML, Mora OA, Bedecarratz PC, Pineda MO, Andrade LI, Uribe JM, Riquelme VA. Diversification of Chilean aquaculture: the case of the giant barnacle Austromegabalanus psittacus (Molina, 1782). Lat Am J Aquat Res. 2012;40(3):596–607.CrossRefGoogle Scholar
  46. Mayr C, Rebolledo L, Schulte K, Schuster A, Zolitschka B, Försterra G, Häussermann V. Responses of nitrogen and carbon deposition rates in Comau Fjord (42°S, Southern Chile) to natural and anthropogenic impacts during the last century. Cont Shelf Res. 2014;78:29–38.CrossRefGoogle Scholar
  47. McClelland JW, Valiela I. Changes in food web structure under the influence of increased anthropogenic nitrogen inputs to estuaries. Mar Ecol Prog Ser. 1998;168:259–71.CrossRefGoogle Scholar
  48. McCulloch M, Montagna M, Försterra G, Mortimer G, Häussermann V, Mazzoli C. Uranium-series dating and growth rates of the cool-water coral Desmophyllum dianthus from the Chilean fjords. 3rd International Symposium on Deep Sea Corals ISDSC 3, Miami. 2005. p. 191.Google Scholar
  49. McCulloch M, Trotter J, Montagna P, Falter J, Dunbar R, Freiwald A, Försterra G, López Correa M, Maier C, Rüggeberg A, Taviani M. Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta. 2012;87:21–34.CrossRefGoogle Scholar
  50. Milewski I. Impacts of salmon aquaculture on the coastal environment: a review. In: Tlusty MF, Bengston DA, Halvorson HO, Oktay SD, Pearce JB, Rheault Jr RB, editors. Marine aquaculture and the environment: a meeting for stakeholders in the Northeast. Falmouth: Cape Cod Press; 2001.Google Scholar
  51. Miller KJ, Mundy CN, Chadderton LW. Ecological and genetic evidence of the vulnerability of shallow water populations of the stylasterid hydrocoral Errina novaezelandiae in New Zealand’s fiords. Aquat Conserv: Mar Freshw Ecosyst. 2004;14:75–94.CrossRefGoogle Scholar
  52. Montiel A, Gerdes D, Arntz W. Distributional patterns of shallow-water polychaetes in the Magellan region: a zoogeographical and ecological synopsis. In: Arntz WE, Lovrich GA, Thatje S, editors. The Magellan-Antarctic connection: links and frontiers at high southern latitudes. Scientia Marina 69 (Suppl 2). 2005.Google Scholar
  53. Müller J. The two mytilids Aulacomya atra and Mytilus chilensis from the Chilean Fjord Region: aspects of population dynamics, production and metabolism. Master Thesis, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research and Christian-Albrechts University Kiel. 2012.Google Scholar
  54. Murray JA. Summary of the scientific results obtained at the sounding, dredging and trawling stations of H. M. S. Challenger, during the years 1873–1876. Edinburgh: Neill and Co; 1895.Google Scholar
  55. Niklitschek E, Soto D, Lafon A, Molinet C, Toledo P. Southward expansion of the Chilean salmon industry in the Patagonian fjords: main environmental challenges. Rev Aquac. 2013;5(3):172–95.CrossRefGoogle Scholar
  56. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature. 2005;437(7059):681–6.CrossRefPubMedGoogle Scholar
  57. Outeiro L, Häussermann V, Viddi F, Hucke-Gaete R, Försterra G, Oyarzo H, Kosiel K, Villasante S. Using ecosystem services mapping for marine spatial planning in Southern Chile under scenario assessment. Ecosyst Serv. 2015;16:341–53.CrossRefGoogle Scholar
  58. Pantoja S, Iriarte L, Daneri G. Oceanography of the Chilean Patagonia. Cont Shelf Res. 2011;31(3):149–53.CrossRefGoogle Scholar
  59. Peck LS, Brockington S, Brey T. Growth and metabolism in the Antarctic brachiopod Liothyearella uva. Philos Trans R Soc London Ser B – Biol Sci. 1997;352:851–8.CrossRefGoogle Scholar
  60. Pickard GL. Water structure in Chilean fjords. Oceanography of the South Pacific. In: Fraser R, editor. Oceanography of the South Pacific. Wellington: New Zealand National Commission for UNESCO; 1973.Google Scholar
  61. Proctor J, Bennett J, Steiner E, Gerhart A. CESTA (Spatial History Project) [Internet]. 2009 [cited 2016 Apr 26]. Available from: https://web.stanford.edu/group/spatialhistory/media/visualizations/ChileNorway12.swf
  62. Rebolledo L, González HE, Muñoz P, Iriarte JL, Lange CB, Pantoja SM. Siliceous productivity changes in Gulf of Ancud sediments (42° S, 72° W), Southern Chile, over the last 150 years. Cont Shelf Res. 2011;31:356–65.CrossRefGoogle Scholar
  63. Rhodes MC, Thompson RJ. Comparative physiology of suspension-feeding in living brachiopods and bivalves–evolutionary implications. Paleobiology. 1993;19:322–34.CrossRefGoogle Scholar
  64. Rice AL. The challenger expedition. Understanding the oceans: marine science in the wake of HMS challenger. Routledge. 1999.Google Scholar
  65. Rogers CS. Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser. 1990;62:185–202.CrossRefGoogle Scholar
  66. Schwabe E, Försterra G, Häussermann V, Melzer RR, Schrödl M. Chitons (Mollusca: Polyplacophora) from the southern Chilean Comau Fjord, with reinstatement of Tonicia calbucensis Plate, 1897 Zootaxa. 2006; 1341:1–27.Google Scholar
  67. SERNAPESCA. Anuario 2013 – Subsector Acuicultura Descarga. 2014 [Internet]. 2014 [cited 2016 Apr 26]. Available from: http://www.sernapesca.cl/index.php?option=com_remository&Itemid=246&func=fileinfo&id=8846
  68. Sépulveda SA, Náquira MV, Arenas M. Susceptibility of coastal landslides and related hazards in the Chilean Patagonia: The case of Hornopirén area (42°S). Invest Geogr Chile. 2011;43:35–46.Google Scholar
  69. Silva N, Palma S. El Programa CIMAR en los canales y fiordos australes. In: Silva N, Palma S, editors. Avances en el conocimiento oceanográfico de las aguas interiores chilenas, Puerto Montt a cabo de Hornos. Valparaíso: Comité Oceanográfico Nacional – Pontificia Universidad Católica de Valparaíso; 2006.Google Scholar
  70. Stratford P, Stewart BG, Chong A. In situ growth rate measurements on the red hydrocoral, Errina novaezelandiae, in Doubtful Sound. N Z J Mar Freshw Res. 2001;35:659–60.Google Scholar
  71. Stuardo J, Valdovinos C. Barreras, Límites faunísticos y provincias biogeoquímicas en Sudamérica austral. In: Gallardo VA, Ferretti O, Moyano HI editors. Oceanografía en Antártica. Chile: ENEA/Centro EULA, Concepción; 1992; 443–52Google Scholar
  72. SUBPESCA. Estado de la Situación de las Principales Pesquerías Chilenas 2015. Valparaiso: Subsecretaria de Pesca; 2016.Google Scholar
  73. Thiel M, Macaya EC, Acuña E, Arntz WE, Horaci B, Brokordt K, Camus PA, Castilla JC, Castro LR, Cortes M, Dumont CP, Escribano R, Fernandez M, Gajardo JA, Gaymer CF, Gomez I, Gonzalez AE, Gonzalez HE, Haye PA, Illanes J-E, Iriarte JL, Lancelloti DA, Luna-Jorquera G, Luxoro C, Manriquez PH, Marin V, Muñoz P, Navarrete SA, Perez E, Poulin E, Sellanes J, Sepulveda HH, Stotz W, Tala F, Thomas A, Vargas CA, Vasquez JA, Vega JMA. The Humboldt current system of northern and central Chile: oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr Mar Biol. 2007;45:195–344.Google Scholar
  74. Vester H, Timme M. Call for cooperation to contain damage by Chile’s salmon farms. Nature. 2010;465(7300):869.CrossRefPubMedGoogle Scholar
  75. Viviani CA. Ecogeografía del litoral chileno. Stud Neotropical Fauna Environ. 1979;14(2-3):65–123.CrossRefGoogle Scholar
  76. Weber M, de Beer D, Lott C, Polerecky L, Kohls K, Abedd RMM, Ferdelman TG, Fabricius KE. Mechanisms of damage to corals exposed to sedimentation. Proc Natl Acad Sci. 2012;109:E1558–67.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Włodarska-Kowalczuk M, Węsławski JM. Impact of climate warming on Arctic benthic biodiversity: a case study of two Arctic glacial bays. Climate Res. 2001;18:127–32.Google Scholar
  78. Wurz E. Autecology of the cold-water coral Caryophyllia huinayensis from Chilean Patagonia. Master Thesis. Rostock: Alfred Wegener Institute Helmholtz Center for Polar and Marine Research and University of Rostock. 2014.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Günter Försterra
    • 1
    • 2
    • 4
    • 5
    • 6
  • Verena Häussermann
    • 1
    • 2
  • Jürgen Laudien
    • 3
  1. 1.Facultad de Recursos NaturalesEscuela de Ciencias del Mar, Universidad Católica de ValparaísoValparaísoChile
  2. 2.Huinay Scientific Field StationPuerto MonttChile
  3. 3.Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  4. 4.Zoologische StaatssammlungMünchenGermany
  5. 5.Ludwig-Maximilians-Universität München, BiocenterDepartment Biologie IIMünchenGermany
  6. 6.GeobioCenterLMUMünchenGermany

Personalised recommendations