Sponge Grounds as Key Marine Habitats: A Synthetic Review of Types, Structure, Functional Roles, and Conservation Concerns

  • Manuel Maldonado
  • Ricardo Aguilar
  • Raymond J. Bannister
  • James J. Bell
  • Kim W. Conway
  • Paul K. Dayton
  • Cristina Díaz
  • Julian Gutt
  • Michelle Kelly
  • Ellen L. R. Kenchington
  • Sally P. Leys
  • Shirley A. Pomponi
  • Hans Tore Rapp
  • Klaus Rützler
  • Ole S. Tendal
  • Jean Vacelet
  • Craig M. Young
Living reference work entry

Abstract

This chapter reviews the major known monospecific and multispecific sponge aggregations in the world’s oceans. They are shown to occur from the intertidal to abyssal depths, in tropical, temperate, and high latitudes and sometimes to create spectacular formations, such as glass sponge reefs, lithistid reef-like fields, and carnivorous sponge grounds. Sponge aggregations are recognized as singular vulnerable habitats that deserve special research attention and legal protection. However, this review reveals that there is only a poor and fragmentary understanding of the main biological, environmental, and geochemical factors that favor and maintain these systems, including the food supply, which is fundamental knowledge. There is also a particular lack of information regarding reproductive biology, growth rates, life spans, and the main factors causing mortality, all crucial drivers for understanding population and community dynamics and for developing conservation strategies. The sponge aggregations have been shown to increase the structural complexity of the habitats, attracting a larger variety of organisms and locally enhancing biodiversity. From the very few cases in which sponge biomass and sponge physiology have been reliably approached jointly, phenomenal fluxes of matter and energy have been inferred. Through their benthic-pelagic coupling, some of the densest sponge aggregations have a significant local or regional impact on major biogeochemical cycles and food webs. Physical damage and habitat destruction derived from man-driven activities along with epidemic diseases facilitated by global environmental alterations emerge as major threats to the future of the sponge aggregations.

Keywords

Porifera Benthic-pelagic coupling Food chains Reef Mangrove Deep-sea benthos Arctic benthos Antarctic benthos Conservation biology Vulnerable habitats 

Notes

Acknowledgments

The authors thank colleagues and institutions for kind picture contributions: Kevin Coate (Fig. 1a), Tracey Bates (Fig. 3c–e), Chip Clark (Fig. 3a, b), and Carla Piantoni (Fig. 3c), Institute of Marine Research (Figs. 1b, c and 4b), Department of Fisheries and Oceans Canada (Fig. 6c, d), National Institute of Water and Atmospheric Research (NIWA) of New Zealand (Figs. 6d and 7a, b), and Neptune Minerals Inc. (Fig. 7d, e), and Alfred Wegener Institute/Marum, University of Bremen, Germany (Fig. 8a, 8d-g). This study has benefitted from funding by the Spanish Ministry of Economy and Competitiveness (CTM2012-37787) to MM; from the Caribbean Coral Reef Ecosystems Program and the National Museum of Natural History, Washington to KR, CD, and MM (Contribution Number 986); from Stiftung Drittes Millennium, Fundación Biodiversidad, and the Ministerio de Agricultura, Alimentación y Medio Ambiente to Oceana and RA; from NIWA, New Zealand Foundation for Research, Science and Technology, and CSIRO’s Division of Marine and Atmospheric Research to MK; the Natural Sciences and Engineering Council of Canada for Discovery and Ship Time grants to SPL; from the Norwegian Research Council to RJB and HTR; from The Norwegian Oil and Gas and the Norwegian Biodiversity Information Centre to HTR; and from the Natural Sciences and Engineering Council of Canada for Discovery and Ship Time grants to SPL.

References

  1. Arellano S, Lee O, Lafi F, Yang J, Wang Y, Young C, et al. Deep sequencing of Myxilla (Ectyomyxilla) methanophila, an epibiotic sponge on cold-seep tubeworms, reveals methylotrophic, thiotrophic, and putative hydrocarbon-degrading microbial associations. Microb Ecol. 2013;65(2):450–61. doi:10.1007/s00248-012-0130-y.CrossRefPubMedGoogle Scholar
  2. Barthel D, Gutt J. Sponge associations in the eastern Weddell Sea. Antarct Sci. 1992;4(2):137–50.CrossRefGoogle Scholar
  3. Beazley L, Kenchington E, Yashayaev I, Murillo FJ. Drivers of epibenthic megafaunal composition in the sponge grounds of the Sackville Spur, northwest Atlantic. Deep-Sea Res I. 2015;98:102–14.CrossRefGoogle Scholar
  4. Beazley LI, Kenchington EL, Murillo FJ, Sacau MDM. Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES J Mar Sci. 2013;70(7):1471–90. doi:10.1093/icesjms/fst124.CrossRefGoogle Scholar
  5. Becking LE, Cleary DFR, de Voogd NJ. Sponge species composition, abundance, and cover in marine lakes and coastal mangroves in Berau. Indonesia Mar Ecol Prog Ser. 2013;481:105–20. doi:10.3354/meps10155.CrossRefGoogle Scholar
  6. Bell JJ, Davy SK, Jones T, Taylor MW, Webster NS. Could some coral reefs become sponge reefs as our climate changes? Glob Chang Biol. 2013;19:2613. doi:10.1111/gcb.12212.CrossRefPubMedGoogle Scholar
  7. Brandt A, Gooday AJ, Brandao SN, Brix S, Brokeland W, Cedhagen T, et al. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature. 2007;447(7142):307–11.CrossRefPubMedGoogle Scholar
  8. Brown R. 2015. Reproduction and genetic structure in a reef-forming glass sponge, Aphrocallistes vastus. MSc Thesis, University of Alberta. https://era.library.ualberta.ca/files/n870zt81x#.VtaVnK2DNTo.
  9. Conway KW, Barrie JV, Austin WC, Luternauer JL. Holocene sponge bioherms on the western Canadian continental shelf. Cont Shelf Res. 1991;11(8–10):771–90.CrossRefGoogle Scholar
  10. Conway KW, Krautter M, Barrie JV, Whitney F, Thomson RE, Reiswig H, et al. Sponge reefs in the Queen Charlotte Basin, Canada: controls on distribution, growth and development. In: Freiwald A, Roberts JM, editors. Cold-water corals and ecosystems. Berlin: Springer; 2005. p. 605–21.CrossRefGoogle Scholar
  11. Chu JWF, Maldonado M, Yahel G, Leys SP. Glass sponge reefs as a silicon sink. Mar Ecol Prog Ser. 2011;441:1–14.CrossRefGoogle Scholar
  12. Dayton PK. Interdecadal variation in an Antarctic sponge and its predator from oceanographic climate shifts. Science. 1989;245:1484–6.CrossRefPubMedGoogle Scholar
  13. Dayton PK, Kim S, Jarrell SC, Oliver JS, Hammerstrom K, Fisher JL, et al. Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini. PLoS One. 2013;8(2):e56939.CrossRefPubMedPubMedCentralGoogle Scholar
  14. de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.CrossRefPubMedGoogle Scholar
  15. Diaz MC, Rützler K. Biodiversity and abundance of sponges in Caribbean mangrove: indicators of environmental quality. Smithson Contrib Mar Sci. 2009;38:151–72.CrossRefGoogle Scholar
  16. Diaz MC. Mangrove and coral reef sponge faunas: untold stories about shallow water Porifera in the Caribbean. Hydrobiologia. 2012;687(1):179–90. doi:10.1007/s10750-011-0952-5.CrossRefGoogle Scholar
  17. Dohrmann M, Göcke C, Reed J, Janussen D. Integrative taxonomy justifies a new genus, Nodastrella gen. nov., for North Atlantic “Rossella” species (Porifera: Hexactinellida: Rossellidae). Zootaxa. 2012;3383:1–13.CrossRefGoogle Scholar
  18. Downey RV, Griffiths HJ, Linse K, Janussen D. Diversity and distribution patterns in high southern latitude sponges. PLoS One. 2012;7(7):e41672.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ekins M, Erpenbeck D, Hall K, Wörheide G, Hooper JNA. Staying well connected: lithistid sponges on seamounts. J Mar Biol Assoc UK. 2016;96(2):437–451. doi:10.1017/S0025315415000831.Google Scholar
  20. Ellison AM, Farnsworth EJ, Twilley RR. Facultative mutualism between red mangroves and root-fouling sponges in Belizean mangal. Ecology. 1996;77(8):2431–44.CrossRefGoogle Scholar
  21. Fallon SJ, James K, Norman R, Kelly M, Ellwood MJ. A simple radiocarbon dating method for determining the age and growth rate of deep-sea sponges. Nucl Inst Methods Phys Res B. 2010;268(7–8):1241–3.CrossRefGoogle Scholar
  22. FAO. Report of the technical consultation on international guidelines for the management of deep-sea fisheries in the high seas Rome: Food and Agriculture Organization of the United Nations. 2009. Report no. 881.Google Scholar
  23. Fillinger L, Janussen D, Lundälv T, Richter C. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Curr Biol. 2013;23(14):1330–4. doi:10.1016/j.cub.2013.05.051.CrossRefPubMedGoogle Scholar
  24. Gerdes D, Klages M, Arntz WE, Herman RL, Galéron J, Hain S. Quantitative investigations on macrobenthos communities of the southeastern Weddell Sea shelf based on multibox corer samples. Polar Biol. 1992;12(2):291–301. doi:10.1007/bf00238272.CrossRefGoogle Scholar
  25. Ghiold J. The sponges that spanned Europe. New Sci. 1991;129(1754):58–62.Google Scholar
  26. Göcke C, Janussen D. Sponge assemblages of the deep Weddell Sea: ecological and zoogeographic results of ANDEEP I–III and SYSTCO I expeditions. Polar Biol. 2013;36(7–2):1059–68.CrossRefGoogle Scholar
  27. Guerra-Castro EJ, Cruz-Motta JJ. Ecology of fouling assemblages associated with mangrove’s roots: an artificial substrate for manipulative experiments. J Exp Mar Biol Ecol. 2014;457:31–40. doi:10.1016/j.jembe.2014.03.017.CrossRefGoogle Scholar
  28. Gutt J, Schickan T. Epibiontic relationships in the Antarctic benthos. Antarct Sci. 1998;10:398–405.CrossRefGoogle Scholar
  29. Gutt J, Barratt I, Domack E, d’Udekem d’Acoz C, Dimmler W, Grémare A, et al. Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Res II Top Stud Oceanogr. 2011;58(1–2):74–83. doi:10.1016/j.dsr2.2010.05.024.CrossRefGoogle Scholar
  30. Gutt J, Böhmer A, Dimmler W. Antarctic sponge spicule mats shape macrobenthic diversity and act as a silicon trap. Mar Ecol Prog Ser. 2013;480:57–71. doi:10.3354/meps10226.CrossRefGoogle Scholar
  31. Janussen D, Tendal OS. Diversity and distribution of Porifera in the bathyal and abyssal Weddell Sea and adjacent areas. Deep-Sea Res II. 2016;96(2):429-436. doi:10.1017/S0025315415000466.Google Scholar
  32. Janussen D, Downey RV. Porifera. In: De Broyer C, Koubbi P, Griffiths H, Raymond B, d’Udekem d’Acoz C, Van de Putte A, editors. Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research; 2014. p. 94–102.Google Scholar
  33. Kahn A, Vehring L, Brown R, Leys S. Dynamic change, recruitment, and resilience in reef-forming glass sponges. J Mar Biol Assoc UK. 2016;96(2):429–436. doi:10.1017/S0025315415000466.Google Scholar
  34. Kahn AS, Yahel G, Chu JWF, Tunnicliffe V, Leys SP. Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol Oceanogr. 2015;60(1):78–88. doi:10.1002/lno.10002.CrossRefGoogle Scholar
  35. Kelly M. The marine Fauna of New Zealand. Porifera: lithistid Demospongiae (Rock Sponges), The marine fauna of New Zealand. Wellington: National Institute of Water and Atmospheric Research (NIWA); 2007.Google Scholar
  36. Kelly M, Ellwood M, Tubbs L, Buckeridge J. The lithistid Demospongiae in New Zealand waters: species composition and distribution. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G, editors. Porifera research: biodiversity, innovation and sustainability, vol série livros. Rio de Janeiro: Museu Nacional du Rio de Janeiro; 2007. p. 393–404.Google Scholar
  37. Klitgaard AB, Tendal OS. Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog Oceanogr. 2004;61(1):57–98. doi:10.1016/j.pocean.2004.06.002.CrossRefGoogle Scholar
  38. Knudby A, Kenchington E, Murillo FJ. Modeling the distribution of Geodia sponges and sponge grounds in the Northwest Atlantic. PLoS One. 2013;8(12):e82306.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Koschinsky A, Billings A, Devey C, Dubilier N, Duester A, Edge D, et al. Discovery of new hydrothermal vents on the southern Mid-Atlantic Ridge (4° S–10° S) during Cruise M68/1. InterRidge News. 2006;15:9–15.Google Scholar
  40. Krautter M, Conway KW, Barrie JV, Neuweiler M. Discovery of a “living dinosaur”: globally unique modern hexactinellid sponge reefs off British Columbia, Canada. Facies. 2001;44:265–82.CrossRefGoogle Scholar
  41. Kuhnz LA, Ruhl HA, Huffard CL, Smith Jr KL. Rapid changes and long-term cycles in the benthic megafaunal community observed over 2 years in the abyssal northeast Pacific. Prog Oceanogr. 2014;124:1–11. doi:10.1016/j.pocean.2014.04.007.CrossRefGoogle Scholar
  42. Kutti T, Bannister RJ, Fosså JH. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA – northern Norwegian continental shelf. Cont Shelf Res. 2013;69:21–30. doi:10.1016/j.csr.2013.09.011.CrossRefGoogle Scholar
  43. Lee WL, Reiswig HM, Austin WC, Lundsten L. An extraordinary new carnivorous sponge, Chondrocladia lyra, in the new subgenus Symmetrocladia (Demospongiae, Cladorhizidae), from off of northern California, USA. Invertebr Biol. 2012;131(4):259–84. doi:10.1111/ivb.12001.CrossRefGoogle Scholar
  44. Lévi C. Lithistid sponges from the Norfolk rise. Recent and Mesozoic genera. In: Reitner J, Keupp H, editors. Fossil and recent sponges. Berlin/Heidelberg/New York: Springer; 1991. p. 72–82.CrossRefGoogle Scholar
  45. Leys SP, Lauzon RJ. Hexactinellid sponge ecology: growth rates and seasonality in deep water sponges. J Exp Mar Biol Ecol. 1998;230:111–29.CrossRefGoogle Scholar
  46. Maldonado M, Carmona MC, Velásquez Z, Puig A, Cruzado A, López A, et al. Siliceous sponges as a silicon sink: an overlooked aspect of the benthopelagic coupling in the marine silicon cycle. Limnol Oceanogr. 2005;50(3):799–809. doi:10.4319/lo.2005.50.3.0799.CrossRefGoogle Scholar
  47. Maldonado M, Riesgo A, Bucci A, Rützler K. Revisiting silicon budgets at a tropical continental shelf: silica standing stocks in sponges surpass those in diatoms. Limnol Oceanogr. 2010;55(5):2001–10. doi:10.4319/lo.2010.55.5.2001.CrossRefGoogle Scholar
  48. Maldonado M, Ribes M, Van Duyl FC. Nutrient fluxes through sponges: biology, budgets, and ecological implications. Adv Mar Biol. 2012;62:114–82. doi:10.1016/B978-0-12-394283-8.00003-5.Google Scholar
  49. Maldonado M. Sponge waste that fuels marine oligotrophic food webs: a re-assessment of its origin and nature. Mar Ecol. 2015;1–15. doi:10.1111/maec.12256.Google Scholar
  50. Maldonado M, Aguilar R, Blanco J, García S, Serrano A, Punzón A. Aggregated clumps of Lithistid sponges: a singular, reef-like bathyal habitat with relevant paleontological connections. PLoS One. 2015;10(5):e0125378.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Murillo FJ, Muñoz PD, Cristobo J, Ríos P, González C, Kenchington E, et al. Deep-sea sponge grounds of the Flemish Cap, Flemish Pass and the Grand Banks of Newfoundland (Northwest Atlantic Ocean): distribution and species composition. Mar Biol Res. 2012;8(9):842–54. doi:10.1080/17451000.2012.682583.CrossRefGoogle Scholar
  52. Piepenburg D, Schmid M, Gerdes D. The benthos off King George Island (South Shetland Islands, Antarctica): further evidence for a lack of a latitudinal biomass cline in the Southern Ocean. Polar Biol. 2002;25(2):146–58. doi:10.1007/s003000100322.CrossRefGoogle Scholar
  53. Pile AJ, Young CM. The natural diet of a hexactinellid sponge: Benthic-pelagic coupling in a deep-sea microbial food web. Deep-Sea Res I Oceanogr Res Pap. 2006;53(7):1148–56.CrossRefGoogle Scholar
  54. Pomponi SA, Kelly M, Reed J, Wright AD. Diversity and bathymetric distribution of lithistid sponges in the tropical western Atlantic region. Bull Biol Soc Wash. 2001;10:344–53.Google Scholar
  55. Rastorgueff PA, Rocher C, Selva M, Chevaldonné P. Preliminary DNA-based diet assessment of a gutless carnivore, the sponge Asbestopluma hypogea. J Exp Mar Biol Ecol. 2015;467:108–14.CrossRefGoogle Scholar
  56. Reiswig HM. Population dynamics of three Jamaican Demospongiae. Bull Mar Sci. 1973;23:191–226.Google Scholar
  57. Reiswig HM. Water transport, respiration and energetics of three tropical marine sponges. J Exp Mar Biol Ecol. 1974;14:231–49.CrossRefGoogle Scholar
  58. Rice AL, Thurston MH, New AL. Dense aggregations of a hexactinellid sponge, Pheronema carpenteri, in the Porcupine Seabight (northeast Atlantic Ocean), and possible causes. Prog Oceanogr. 1990;24:179–96.CrossRefGoogle Scholar
  59. Rützler K. Low-tide exposure of sponges in a Caribbean mangrove community. Mar Ecol. 1995;16(2):165–79. doi:10.1111/j.1439-0485.1995.tb00402.x.CrossRefGoogle Scholar
  60. Rützler K, Díaz MC, van Soest RWM, Zea S, Smith K, Alvarez B, et al. Diversity of sponge fauna in mangrove ponds, Pelican Cays, Belize. Atoll Res Bull. 2000;477:231–50.Google Scholar
  61. Rützler K. The role of sponges in the Mesoamerican barrier-Reef ecosystem, Belize. In: Becerro MA, Uriz MJ, Maldonado M, Turon X, editors. Adv Mar Biol. 2012;61(61):211–271. doi:10.1016/B978-0-12-387787-1.00002-7.Google Scholar
  62. Sañé E, Isla E, Bárcena MÁ, DeMaster DJ. A shift in the biogenic silica of sediment in the Larsen B continental shelf, off the eastern Antarctic Peninsula, resulting from climate change. PLoS One. 2013;8(1):e52632.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schönberg C, Fromont J. Sponge gardens of Ningaloo Reef (Carnarvon Shelf, Western Australia) are biodiversity hotspots. Hydrobiologia. 2012;687(1):143–61. doi:10.1007/s10750-011-0863-5.CrossRefGoogle Scholar
  64. Staudigel H, Hart SR, Pile A, Bailey BE, Baker ET, Brooke S, et al. Vailulu’u Seamount, Samoa: life and death on an active submarine volcano. Proc Natl Acad Sci. 2006;103(17):6448–53. doi:10.1073/pnas.0600830103.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tompkins-MacDonald G, Leys S. Glass sponges arrest pumping in response to sediment: implications for the physiology of the hexactinellid conduction system. Mar Biol. 2008;154(6):973–84. doi:10.1007/s00227-008-0987-y.CrossRefGoogle Scholar
  66. Vacelet J, Boury-Esnault N. Carnivorous sponges. Nature. 1995;373(6512):333–5. doi:10.1038/373333a0.CrossRefGoogle Scholar
  67. Vacelet J, Boury-Esnault N, Fiala-Medioni A, Fisher CR. A methanotrophic carnivorous sponge. Nature. 1995;377:296.CrossRefGoogle Scholar
  68. Vacelet J, Kelly MA. New species of Abyssocladia (Porifera, Demospongiae, Poecilosclerida, Cladorhizidae) and other carnivorous sponges from the far eastern Solomon Islands. Zootaxa. 2014;3815(3):11. doi:10.11646/zootaxa.3815.3.4.CrossRefGoogle Scholar
  69. Wiedenmayer F. Contributions to the knowledge of post-Paleozoic neritic and archibental sponges (Porifera). Schweiz Paläontol Abhand. 1994;116:1–147.Google Scholar
  70. Wilkinson CR, Cheshire AC. Comparison of Sponge populations across the Barrier Reefs of Australia and Belize: evidence for higher productivity in the Caribbean. Mar Ecol Prog Ser. 1990;67:285–94.CrossRefGoogle Scholar
  71. Witte U. Seasonal reproduction in deep-sea sponges triggered by vertical particle flux? Mar Biol. 1996;124:571–81.CrossRefGoogle Scholar
  72. Witte U, Graf G. Metabolism of deep-sea sponges in the Greenland-Norwegian Sea. J Exp Mar Biol Ecol. 1996;198:223–35.CrossRefGoogle Scholar
  73. Wulff JL. Rapid diversity and abundance decline in a Caribbean coral reef sponge community. Biol Conserv. 2006;127:167–76.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Manuel Maldonado
    • 1
  • Ricardo Aguilar
    • 2
  • Raymond J. Bannister
    • 3
  • James J. Bell
    • 4
  • Kim W. Conway
    • 5
  • Paul K. Dayton
    • 6
  • Cristina Díaz
    • 7
  • Julian Gutt
    • 8
  • Michelle Kelly
    • 9
  • Ellen L. R. Kenchington
    • 10
  • Sally P. Leys
    • 11
  • Shirley A. Pomponi
    • 12
  • Hans Tore Rapp
    • 13
  • Klaus Rützler
    • 14
  • Ole S. Tendal
    • 15
  • Jean Vacelet
    • 16
  • Craig M. Young
    • 17
  1. 1.Center for Advanced Studies of Blanes (CEAB-CSIC)GironaSpain
  2. 2.OceanaMadridSpain
  3. 3.Institute of Marine ResearchBergenNorway
  4. 4.Victoria University of WellingtonWellingtonNew Zealand
  5. 5.Geological Survey of Canada, Pacific Geoscience CentreSidneyCanada
  6. 6.University of California, San DiegoLa JollaUSA
  7. 7.Museo Marino de MargaritaBoca de RioVenezuela
  8. 8.Helmholtz Centre for Polar and Marine ResearchAlfred Wegener InstituteBremerhavenGermany
  9. 9.National Institute of Water and Atmospheric Research (NIWA)Auckland CentralNew Zealand
  10. 10.Bedford Institute of OceanographyDartmouthCanada
  11. 11.University of AlbertaEdmontonCanada
  12. 12.Harbor Branch Oceanographic InstituteFlorida Atlantic UniversityFort PierceUSA
  13. 13.University of BergenBergenNorway
  14. 14.National Museum of Natural History (NMNH)Smithsonian InstitutionWashingtonUSA
  15. 15.Natural History Museum of DenmarkKøbenhavnDenmark
  16. 16.Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentaleMarseilleFrance
  17. 17.Oregon Institute of Marine Biology (OIMB-UO)CharlestonUSA

Personalised recommendations