Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Cortical Neurons and Conducting Velocity

  • Sujita Kumar KarEmail author
  • Aathira J. Prakash
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_3099-1

Synonyms

Definitions

Cortical neurons are the neurons present in the cerebral and cerebellar cortex.

Neurons or nerve cells are electrically excitable cells that receive and transmit impulses (such as action potential).

Conduction velocity is the velocity at which impulses are transmitted along an excitable tissue.

Introduction

Neurons form the basic building blocks of nervous system. It is believed that neurons have evolved from primitive cells, which used to respond to various stimuli by contracting. Neurons have evolved and developed to perform the function of integrating and transmitting nerve impulses. Broadly the brain parenchyma contains two types of cells (neuronal cells and glial cells). The neuronal cells have a unique structure. Specific regions of the neuron deliver specific functions (Fig. 1).
This is a preview of subscription content, log in to check access.

References

  1. Barret, K. E., Boitano, S., & Barman, S. M. (2012). Ganong’s review of medical physiology. New York: McGraw-Hill.Google Scholar
  2. Carter, R. (2014). The human brain book: An illustrated guide to its structure, function, and disorders. Penguin. London, UK: Dorling Kindersley Limited.Google Scholar
  3. Casano, A. M., & Peri, F. (2015). Microglia: Multitasking specialists of the brain. Developmental Cell, 32(4), 469–477.CrossRefGoogle Scholar
  4. Farhy-Tselnicker, I., & Allen, N. J. (2018). Astrocytes, neurons, synapses: A tripartite view on cortical circuit development. Neural Development, 13(1), 7.  https://doi.org/10.1186/s13064-018-0104-y.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Geschwind, D. H., & Rakic, P. (2013). Cortical evolution: Judge the brain by its cover. Neuron, 80(3), 633–647.CrossRefGoogle Scholar
  6. Kiziltan, E., Dalkilic, N., Guney, F. B., & Pehlivan, F. (2007). Conduction velocity distribution: Early diagnostic tool for peripheral neuropathies. The International Journal of Neuroscience, 117(2), 203–213.  https://doi.org/10.1080/00207450600582496.CrossRefPubMedGoogle Scholar
  7. Kriegstein, A., Noctor, S., & Martínez-Cerdeño, V. (2006). Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nature Reviews Neuroscience, 7(11), 883–890.  https://doi.org/10.1038/nrn2008.CrossRefPubMedGoogle Scholar
  8. Manganelli, F., Pisciotta, C., Reilly, M. M., Tozza, S., Schenone, A., Fabrizi, G. M., et al. (2016). Nerve conduction velocity in CMT 1A: What else can we tell? European Journal of Neurology, 23(10), 1566–1571.CrossRefGoogle Scholar
  9. Molyneaux, B. J., Arlotta, P., Menezes, J. R., & Macklis, J. D. (2007). Neuronal subtype specification in the cerebral cortex. Nature Reviews Neuroscience, 8(6), 427.CrossRefGoogle Scholar
  10. Nave, K.-A. (2010). Myelination and support of axonal integrity by glia. Nature, 468(7321), 244.CrossRefGoogle Scholar
  11. Noctor, S. C., Martínez-Cerdeño, V., Ivic, L., & Kriegstein, A. R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neuroscience, 7(2), 136–144.  https://doi.org/10.1038/nn1172.CrossRefPubMedGoogle Scholar
  12. Parnavelas, J. G. (2002). The origin of cortical neurons. Brazilian Journal of Medical and Biological Research, 35(12), 1423–1429.CrossRefGoogle Scholar
  13. Reed, T. E., & Jensen, A. R. (1992). Conduction velocity in a brain nerve pathway of normal adults correlates with intelligence level. Intelligence, 16(3–4), 259–272.CrossRefGoogle Scholar
  14. Roostaei, T., Nazeri, A., Sahraian, M. A., & Minagar, A. (2014). The human cerebellum: A review of physiologic neuroanatomy. Neurologic Clinics, 32(4), 859–869.CrossRefGoogle Scholar
  15. Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences, 9(5), 250–257.  https://doi.org/10.1016/j.tics.2005.03.005.CrossRefPubMedGoogle Scholar
  16. Standring, S. (2008). Gray’s anatomy: The anatomical basis of clinical practice. 40th Ed. Edinburgh, Scotland: Churchill Livingstone/Elsevier. ISBN: 978-0-8089-2371-8.  https://doi.org/10.1016/j.bjoms.2009.04.015.
  17. Stetson, D. S., Albers, J. W., Silverstein, B. A., & Wolfe, R. A. (1992). Effects of age, sex, and anthropometric factors on nerve conduction measures. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 15(10), 1095–1104.CrossRefGoogle Scholar
  18. Vernon, P. A., & Mori, M. (1992). Intelligence, reaction times, and peripheral nerve conduction velocity. Intelligence, 16(3–4), 273–288.CrossRefGoogle Scholar
  19. Zhu, G., Du, L., Jin, L., & Offenhäusser, A. (2016). Effects of morphology constraint on electrophysiological properties of cortical neurons. Scientific Reports, 6, 23086.  https://doi.org/10.1038/srep23086.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PsychiatryKing George’s Medical UniversityLucknowIndia

Section editors and affiliations

  • Todd K. Shackelford
    • 1
  1. 1.Department of PsychologyOakland UniversityRochesterUSA