Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Grandmother Hypothesis, The

  • Mirkka Lahdenperä
  • Antti O. TanskanenEmail author
  • Mirkka Danielsbacka
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_2340-1

Synonyms

Definition

The grandmother hypothesis states that the long post-reproductive life span in human females would have evolved because women were able to gain more fitness by investing in their adult offspring and grand-offspring rather than by reproducing until old age. Because of this fitness benefit, selection would have favored a longer post-reproductive life span during human evolution.

Introduction

In most animals, reproductive and somatic senescence occurs at the same time as a part of the gradual decline in overall physical condition with age. In few species, however, the reproductive functions show an abrupt deterioration well before other body functions, leading to a total loss of fertility during middle age and subsequent post-reproductive life span of several decades. So far, the most convincing evidence from menopause and long post-reproductive life span comes from a few whale species,...

This is a preview of subscription content, log in to check access.

References

  1. Cant, M. A., & Johnstone, R. A. (2008). Reproductive conflict and the separation of reproductive generations in humans. Proceedings of the National Academy of Sciences, USA, 105, 5332–5336.  https://doi.org/10.1073/pnas.0711911105.CrossRefGoogle Scholar
  2. Caspari, R., & Lee, S. H. (2004). Older age becomes common late in human evolution. Proceedings of the National Academy of Sciences, USA, 101, 10895–10900.  https://doi.org/10.1073/pnas.0402857101.CrossRefGoogle Scholar
  3. Coall, D. A., & Hertwig, R. (2010). Grandparental investment: Past, present, and future. Behavioral and Brain Sciences, 33(1), 1–19.  https://doi.org/10.1017/S0140525X09991105.CrossRefPubMedGoogle Scholar
  4. Croft, D. P., Brent, L. J. N., Franks, D. W., & Cant, M. A. (2015). The evolution of prolonged life after reproduction. Trends in Ecology & Evolution, 30(7), 407–416.  https://doi.org/10.1016/j.tree.2015.04.011.CrossRefGoogle Scholar
  5. Croft, D. P., Johnstone, R. A., Ellis, S., Nattrass, S., Franks, D. W., Brent, L. J., et al. (2016). Reproductive conflict and the evolution of menopause in killer whales. Current Biology, 27(2), 298–304.  https://doi.org/10.1016/j.cub.2016.12.015.CrossRefGoogle Scholar
  6. Ellis, S., Franks, D. W., Nattrass, S., Cant, M. A., Bradley, D. L., Giles, D., et al. (2018). Postreproductive lifespans are rare in mammals. Ecology and Evolution, 8(5), 2482–2494.  https://doi.org/10.1002/ece3.3856.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fairbanks, L. A., & Mcguire, M. T. (1986). Age, reproductive value, and dominance-related behavior in vervet monkey females – crossgenerational influences on social relationships and reproduction. Animal Behaviour, 34(6), 1710–1721.  https://doi.org/10.1016/S0003-3472(86)80258-5.CrossRefGoogle Scholar
  8. Hamilton, W. D. (1964). The genetical evolution of social behaviour I and II. Journal of Theoretical Biology, 7(1), 1–16, 17–52.  https://doi.org/10.1016/0022-5193(64)90038-4,  https://doi.org/10.1016/0022-5193(64)90039-6.CrossRefGoogle Scholar
  9. Hawkes, K. (2003). Grandmothers and the evolution of human longevity. American Journal of Human Biology, 15(3), 380–400.  https://doi.org/10.1002/ajhb.10156.CrossRefPubMedGoogle Scholar
  10. Hawkes, K., Rogers, A. R., & Charnov, E. L. (1995). The male’s dilemma: Increased offspring production is more paternity to steal. Evolutionary Ecology, 9(6), 662–677.  https://doi.org/10.1007/BF01237661.CrossRefGoogle Scholar
  11. Hawkes, K., O’Connell, J. F., & Blurton Jones, N. G. (1997). Hadza women’s time allocation, offspring provisioning, and the evolution of long postmenopausal life spans. Current Anthropology, 38(4), 551–557.CrossRefGoogle Scholar
  12. Hawkes, K., O’Connell, J. F., Blurton Jones, N. G., Alvarez, H., & Charnov, E. L. (1998). Grandmothering, menopause, and the evolution of human life histories. Proceedings of the National Academy of Sciences, USA, 95(3), 1336–1339.CrossRefGoogle Scholar
  13. Kaplan, H., Hill, K., Lancaster, J., & Hurtado, M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology, 9(4), 156–185.  https://doi.org/10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7.CrossRefGoogle Scholar
  14. Kim, P. S., Coxworth, J. E., & Hawkes, K. (2012). Increased longevity evolves from grandmothering. Proceedings of the Royal Society B: Biological Sciences, 279, 4880–4884.  https://doi.org/10.1098/rspb.2012.1751.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lahdenperä, M., Lummaa, V., Helle, S., Tremblay, M., & Russell, A. F. (2004). Fitness benefits of prolonged post-reproductive lifespan in women. Nature, 428, 178–181.  https://doi.org/10.1038/nature02367.CrossRefPubMedGoogle Scholar
  16. Lahdenperä, M., Gillespie, D. O., Lummaa, V., & Russell, A. F. (2012). Severe intergenerational reproductive conflict and the evolution of menopause. Ecology Letters, 15(11), 1283–1290.  https://doi.org/10.1111/j.1461-0248.2012.01851.x.CrossRefPubMedGoogle Scholar
  17. Lahdenperä, M., Mar, K. U., & Lummaa, V. (2016). Nearby grandmother enhances calf survival and reproduction in Asian elephants. Scientific Reports, 6, 27213.  https://doi.org/10.1038/srep27213.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Møller, A. P., Fincher, C. L., & Thornhill, R. (2009). Why men have shorter lives than women: Effects of resource availability, infectious disease, and senescence. American Journal of Human Biology, 21(3), 357–364.  https://doi.org/10.1002/ajhb.20879.CrossRefPubMedGoogle Scholar
  19. Morton, R. A., Stone, J. R., & Singh, R. S. (2013). Mate choice and the origin of menopause. PLoS Computational Biology, 9(6), e1003092.  https://doi.org/10.1371/journal.pcbi.1003092.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Pavelka, M. S. M., Fedigan, L. M., & Zohar, S. (2002). Availability and adaptive value of reproductive and postreproductive Japanese macaque mothers and grandmothers. Animal Behaviour, 64(3), 407–414.  https://doi.org/10.1006/anbe.2002.3085.CrossRefGoogle Scholar
  21. Penn, D. J., & Smith, K. R. (2007). Differential fitness costs of reproduction between the sexes. Proceedings of the National Academy of Sciences, USA, 104(2), 553–558.  https://doi.org/10.1073/pnas.0609301103.CrossRefGoogle Scholar
  22. Sear, R., & Coall, D. (2011). How much does family matter? Cooperative breeding and the demographic transition. Population and Development Review, 37(Supplement), 81–112.  https://doi.org/10.1111/j.1728-4457.2011.00379.x.CrossRefPubMedGoogle Scholar
  23. Sear, R., & Mace, R. (2008). Who keeps children alive? A review of the effects of kin on child survival. Evolution and Human Behavior, 29, 1–18.  https://doi.org/10.1016/j.evolhumbehav.2007.10.001.CrossRefGoogle Scholar
  24. Tanskanen, A. O., & Danielsbacka, M. (2017). Multigenerational effects on children’s cognitive and socioemotional outcomes: A within-child investigation. Child Development, 88.  https://doi.org/10.1111/cdev.12968.
  25. Tanskanen, A. O., & Danielsbacka, M. (2018). Intergenerational family relations. An evolutionary social science approach. London: Routledge.Google Scholar
  26. Tuljapurkar, S. D., Puleston, C. O., & Gurven, M. D. (2007). Why men matter: Mating patterns drive evolution of human lifespan. PLoS One, 2(8), e785.  https://doi.org/10.1371/journal.pone.0000785.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Voland, E., & Beise, J. (2002). Opposite effects of maternal and paternal grandmothers on infant survival in historical Krummhörn. Behavioral Ecology and Sociobiology, 52(6), 435–443.CrossRefGoogle Scholar
  28. Voland, E., Chasiotis, A., & Schiefenhovel, W. (Eds.). (2005). Grandmotherhood: The evolutionary significance of the second half of female life. New Brunswick: Rutgers University Press.Google Scholar
  29. Williams, G. C. (1957). Pleiotropy, natural selection and the evolution of senescence. Evolution, 11, 398–411.  https://doi.org/10.1111/j.1558-5646.1957.tb02911.x.CrossRefGoogle Scholar
  30. Wood, J. W., O’Connor, K. A., Holman, D. J., Brindle, E., Barsom, S. H., & Grimes, M. A. (2000). The evolution of menopause by antagonistic pleiotropy. Homo, 51, S149.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mirkka Lahdenperä
    • 1
  • Antti O. Tanskanen
    • 2
    Email author
  • Mirkka Danielsbacka
    • 2
    • 3
  1. 1.Department of BiologyUniversity of TurkuTurkuFinland
  2. 2.Department of Social ResearchUniversity of TurkuTurkuFinland
  3. 3.Population Research Institute of FinlandHelsinkiFinland

Section editors and affiliations

  • Todd K. Shackelford
    • 1
  1. 1.Department of PsychologyOakland UniversityRochesterUSA