Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Evolutionary Change

  • Dakota E. McCoy
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_2094-1

Synonyms

Definition

Evolutionary change is the heritable change in populations and species over time, due to mechanisms such as natural selection, random genetic drift, and sexual selection.

Introduction

Evolution is heritable change over time, through which species change, diverge, and sometimes create new lineages. “Evolution” and “natural selection” are often used interchangeably, but the two are distinct: evolution is the pattern, and natural selection is one of many mechanisms that causeevolution. Under natural selection, organisms which are better adapted to their environment have more (or healthier) offspring, so their traits are more often passed on to future generations. In this manner, natural selection drives evolution. However, other mechanisms can also drive evolution, such as random genetic “drift,” or random changes in genes and traits over time, artificial selection by humans for human-desired traits in other organisms, and sexual selection...

This is a preview of subscription content, log in to check access.

References

  1. Ayala, F. J. (1986). On the virtues and pitfalls of the molecular evolutionary clock. Journal of Heredity, 77, 226–235. Am Genetic Assoc.CrossRefGoogle Scholar
  2. Beja-Pereira, A., Luikart, G., England, P. R., Bradley, D. G., Jann, O. C., Bertorelle, G., Chamberlain, A. T., Nunes, T. P., Metodiev, S., & Ferrand, N. (2003). Gene-culture coevolution between cattle milk protein genes and human lactase genes. Nature Genetics, 35, 311–313. Nature Publishing Group.CrossRefGoogle Scholar
  3. Boomsma, D., Busjahn, A., & Peltonen, L. (2002). Classical twin studies and beyond. Nature Reviews Genetics, 3, 872–882. Nature Publishing Group.CrossRefGoogle Scholar
  4. Briggs, D. E. G., Fortey, R. A., & Wills, M. A. (1992). Morphological disparity in the Cambrian. Science, 256, 1670–1673.CrossRefGoogle Scholar
  5. Brunet, M., Guy, F., Pilbeam, D., Mackaye, H. T., Likius, A., Ahounta, D., Beauvilain, A., Blondel, C., Bocherens, H., & Boisserie, J.-R. (2002). A new hominid from the Upper Miocene of Chad, Central Africa. Nature, 418, 145–151. Nature Publishing Group.CrossRefGoogle Scholar
  6. Burt, A., & Trivers, R. (2006). Genes in conflict: The biology of selfish genetic elements. Cambridge, MA: Belknap Press of Harvard University Press.CrossRefGoogle Scholar
  7. Cartmill, M. (1974). Daubentonia, Dactylopsila, woodpeckers and klinorhynchy. Prosimian biology (pp. 655–670). London: Duckworth.Google Scholar
  8. Chen, M. K., Lakshminarayanan, V., & Santos, L. R. (2006). How basic are behavioral biases? Evidence from capuchin monkey trading behavior. Journal of Political Economy, 114, 517–537. JSTOR.CrossRefGoogle Scholar
  9. Cheng, Z., Ventura, M., She, X., Khaitovich, P., Graves, T., Osoegawa, K., Church, D., DeJong, P., Wilson, R. K., & Pääbo, S. (2005). A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature, 437, 88–93. Nature Publishing Group.CrossRefGoogle Scholar
  10. Dawkins, R. (2016). The selfish gene. Oxford: Oxford University Press.Google Scholar
  11. Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17, 89–96. Nature Publishing Group.CrossRefGoogle Scholar
  12. Dulai, K. S., von Dornum, M., Mollon, J. D., & Hunt, D. M. (1999). The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Research, 9, 629–638. Cold Spring Harbor Lab.PubMedGoogle Scholar
  13. Foote, A. D., Vijay, N., Ávila-Arcos, M. C., Baird, R. W., Durban, J. W., Fumagalli, M., Gibbs, R. A., Hanson, M. B., Korneliussen, T. S., & Martin, M. D. (2016). Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nature Communications, 7, 11693. Nature Publishing Group.CrossRefGoogle Scholar
  14. Fu, Q., Hajdinjak, M., Moldovan, O. T., Constantin, S., Mallick, S., Skoglund, P., Patterson, N., Rohland, N., Lazaridis, I., & Nickel, B. (2015). An early modern human from Romania with a recent Neanderthal ancestor. Nature, 524, 216–219. Nature Publishing Group.CrossRefGoogle Scholar
  15. Garcia, M.-A. (1999). Human footprints in the Chauvet Cave. International Newsletter on Rock Art, INORA, 24, 1–4.Google Scholar
  16. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard University Press.Google Scholar
  17. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London B: Biological Sciences, 205, 581–598. The Royal Society.CrossRefGoogle Scholar
  18. Gould, S. J., & Vrba, E. S. (1982). Exaptation – A missing term in the science of form. Paleobiology, 8, 4–15. Cambridge University Press.CrossRefGoogle Scholar
  19. Haig, David. “Genetic conflicts in human pregnancy.” The Quarterly review of biology 68.4 (1993): 495–532.CrossRefGoogle Scholar
  20. Hamilton, W. D. (1964). The genetical evolution of social behaviour. II. Journal of Theoretical Biology, 7, 17–52. Elsevier.CrossRefGoogle Scholar
  21. Harmand, S., Lewis, J. E., Feibel, C. S., Lepre, C. J., Prat, S., Lenoble, A., Boës, X., Quinn, R. L., Brenet, M., & Arroyo, A. (2015). 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature, 521, 310–315. Nature Publishing Group.CrossRefGoogle Scholar
  22. Ho, S. Y. W., & Larson, G. (2006). Molecular clocks: When times are a-changin. Trends in Genetics, 22, 79–83. Elsevier.CrossRefGoogle Scholar
  23. Huerta-Sánchez, E., Jin, X., Bianba, Z., Peter, B. M., Vinckenbosch, N., Liang, Y., Yi, X., He, M., Somel, M., & Ni, P. (2014). Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512, 194–197. Nature Publishing Group.CrossRefGoogle Scholar
  24. Jerison, H. (1973). Evolution of the brain and intelligence. Elsevier. Academic Press, New York and London.Google Scholar
  25. Knoll, A. H. (2015). Life on a young planet: The first three billion years of evolution on earth. Princeton: Princeton University Press.CrossRefGoogle Scholar
  26. Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R. E., Burbano, H. A., Hublin, J.-J., Hänni, C., Fortea, J., & De La Rasilla, M. (2007). The derived FOXP2 variant of modern humans was shared with Neandertals. Current Biology, 17, 1908–1912. Elsevier.CrossRefGoogle Scholar
  27. Lynch, M., & Conery, J. S. (2000). The evolutionary fate and consequences of duplicate genes. Science, 290, 1151–1155. American Association for the Advancement of Science.CrossRefGoogle Scholar
  28. McCoy, D. E., & Norris, C. A. (2012). The cranial anatomy of the Miocene notoungulate Hegetotherium mirabile (Notoungulata, Hegetotheriidae) with preliminary observations on diet and method of feeding. Bulletin of the Peabody Museum of Natural History, 53, 355–374. BioOne.CrossRefGoogle Scholar
  29. McCoy, V. E. et al. (2016). The “Tully monster” is a vertebrate. Nature advance on. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. Available from  https://doi.org/10.1038/nature16992.
  30. Moore, T., & Haig, D. (1991). Genomic imprinting in mammalian development: a parental tug-of-war. Trends in Genetics, 7(2), 45–49.CrossRefGoogle Scholar
  31. Okasha, S. (2006). Evolution and the levels of selection. Oxford: Oxford University Press.CrossRefGoogle Scholar
  32. Prum, R. O. (1999). Development and evolutionary origin of feathers. The Journal of Experimental Zoology, 285, 291–306.CrossRefGoogle Scholar
  33. Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., Viola, B., Briggs, A. W., Stenzel, U., & Johnson, P. L. F. (2010). Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468, 1053–1060. Nature Publishing Group.CrossRefGoogle Scholar
  34. Sahney, S., & Benton, M. J. (2008). Recovery from the most profound mass extinction of all time. Proceedings of the Royal Society of London B: Biological Sciences, 275, 759–765. The Royal Society.CrossRefGoogle Scholar
  35. Sawyer, S. A., Parsch, J., Zhang, Z., & Hartl, D. L. (2007). Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila. Proceedings of the National Academy of Sciences, 104, 6504–6510. National Acad Sciences.CrossRefGoogle Scholar
  36. Vargha-Khadem, F., Gadian, D. G., Copp, A., & Mishkin, M. (2005). FOXP2 and the neuroanatomy of speech and language. Nature Reviews Neuroscience, 6, 131–138. Nature Publishing Group.CrossRefGoogle Scholar
  37. Warner, D. A., & Shine, R. (2008). The adaptive significance of temperature-dependent sex determination in a reptile. Nature, 451, 566–568. Nature Publishing Group.CrossRefGoogle Scholar
  38. Weiss, M. C., Sousa, F. L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., & Martin, W. F. (2016). The physiology and habitat of the last universal common ancestor. Nature Microbiology, 1, 16116. Nature Publishing Group.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Harvard UniversityCambridgeUSA

Section editors and affiliations

  • Karin Machluf
    • 1
  1. 1.Pennsylvania State UniversityUniversity ParkUSA