Skip to main content

Non-ablative Lasers for Photorejuvenation

Part of the Clinical Approaches and Procedures in Cosmetic Dermatology book series (CAPCD)

Abstract

Photoaging of the skin principally depends upon the amount of melanin in the skin and the degree of exposure to ultraviolet radiation. Solar damage to DNA leads to a reduction in the skin’s collagen content and ultimately to a deficit in the structural integrity of the skin. This manifests as clinically visible skin atrophy, lines and wrinkles, and dyschromias such as telangiectasias and pigmented lesions. Photorejuvenation entails an improvement in the tone, texture, and pigmentation of the skin. Various laser technologies are available that rejuvenate skin by resurfacing the uppermost layers and allow for the regeneration of new skin cells. The myriad of laser systems includes ablative and non-ablative lasers in both fractionated and nonfractionated or conventional forms. In varying degrees, all of these lasers treat pigmented lesions, soften wrinkles, and reduce the appearance of scars. Although the ablative technologies yield more effective results in terms of the overall reduction of photoaging, the non-ablative lasers allow for swift healing and are rarely associated with any complications or downtime. Furthermore, non-ablative lasers offer a wider spectrum of clinical indications, since they can be used to treat vascular lesions such as telangiectasia, generalized erythema, and rosacea that are commonly associated with aging skin.

Apart from photorejuvenation, non-ablative lasers have multiple applications including the reduction in sebum secretion in acne and the treatment of a variety of scars. However, this review aims to give an overview and highlight the clinical advantages of both fractionated and nonfractionated non-ablative laser platforms in current use for the treatment of photodamaged skin.

Keywords

  • Photoaging
  • Photodamaged skin
  • Skin atrophy
  • Aging skin
  • Wrinkles
  • Dyschromias
  • Pigmented lesions
  • Photorejuvenation
  • Resurfacing
  • Non-ablative lasers
  • Fractionated laser

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Alexiades-Armenakas MR, Dover JS, Arndt KA. The spectrum of laser skin resurfacing: Non-ablative, fractional, and ablative laser resurfacing. J Am Acad Dermatol. 2008;58:719–37.

    CrossRef  PubMed  Google Scholar 

  • Alexiades-Armenakas MR, Dover JS, Arndt KA. Fractional laser skin resurfacing. J Drugs Dermatol. 2012;11:1274–87.

    PubMed  Google Scholar 

  • Alster TS. Cutaneous resurfacing with CO2 and erbium : YAG lasers: preoperative, intraoperative, and postoperative considerations. Plast Reconstr Surg. 1999;103:619–32.

    CAS  CrossRef  PubMed  Google Scholar 

  • Alster TS, West TB. Resurfacing of atrophic facial acne scars with a high-energy pulsed carbon dioxide laser. Dermatol Surg. 1996;22:151–4.

    CAS  PubMed  Google Scholar 

  • Alster TS, Tanzi EL, Lazarus M. The use of fractional laser photothermolysis for the treatment of atrophic scars. Dermatol Surg. 2007;33:295–9.

    CAS  PubMed  Google Scholar 

  • Anderson RR, Parrish JA. Selective photothermolysis - precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220:524–7.

    CAS  CrossRef  PubMed  Google Scholar 

  • Ara G, Anderson RR, Mandel KG, Otteson M, Oseroff AR. Irradiation of pigmented melanoma cells with high intensity pulsed radiation generates acoustic waves and kills cells. Lasers Surg Med. 1990;10:52–9.

    CAS  CrossRef  PubMed  Google Scholar 

  • Bjerring P, Clement M, Heickendorff L, Lybecker H, Kiernan M. Dermal collagen production following irradiation by dye lser and broadband light source. J Cosmet Laser Ther. 2002;4(2):39–43.

    CrossRef  PubMed  Google Scholar 

  • Brauer JA, Mc Daniel DH, Bloom BS, Reddy KK, Bernstein LJ, Geronemus RG. Non-ablative 1927 nm fractional resurfacing for the treatment of facial photopigmentation. J Drugs Dermatol. 2014;13(11):1317–22.

    PubMed  Google Scholar 

  • de Angelis F, Kolesnikova L, Renato F, Liguori G. Fractional non-ablative 1540-nm laser treatment of striae distensae in Fitzpatrick skin types II to IV: clinical and histological results. Aesthet Surg J. 2011;31(4):411–9.

    CrossRef  PubMed  Google Scholar 

  • DeHoratius DM, Dover JS. Non-ablative tissue remodeling and photorejuvenation. Clin Dermatol. 2007;25(5):474–9.

    CrossRef  PubMed  Google Scholar 

  • Dover J, Marogolis RJ, Polla LL, Watanabe S, Hruza GJ, Parrish JA, Anderson RR. Pigmented guinea pig skin irradiated with Q-switched ruby laser pulses: morphologic and histologic findings. Arch Dermatol. 1989a;125:42–9.

    Google Scholar 

  • Dover JS, Margolis RJ, Polla LL, Watanabe S, Hruza GJ, Parrish JA, Anderson RR. Pigmented guinea pig skin irradiated with Q-switched ruby laser pulses. Morphologic and histologic findings. Arch Dermatol. 1989b;125(1):43–9.

    CAS  CrossRef  PubMed  Google Scholar 

  • El-Domyati M, El-Ammawi TS, Medhat W, Moawad O, Mahoney MG, Uitto J. Effects of the Nd:YAG 1320-nm laser on skin rejuvenation: clinical and histological correlations. J Cosmet Laser Ther. 2011;13(3):98–106.

    CrossRef  PubMed  Google Scholar 

  • Fournier N, Dahan S, Barneon G, Rouvrais C, Diridollou S, Lagarde JM, Mordon S. Non-ablative remodeling: A 14- month clinical ultrasound imaging and profilometric evaluation of a 1540 nm Er:Glass laser. Dermatol Surg. 2002;28:926–31.

    PubMed  Google Scholar 

  • Geraghty LN, Biesman B. Clinical evaluation of single wavelength fractional laser and a novel multi-wavelength fractional laser in the treatment of photodamaged skin. Lasers Surg Med. 2009;41(6):408–16.

    CrossRef  PubMed  Google Scholar 

  • Geronemus RG. Fractional photothermolysis: Current and future applications. Lasers Surg Med. 2006;38:169–76.

    CrossRef  PubMed  Google Scholar 

  • Gilchrest BA. Skin aging and photoaging. Dermatol Nursing. 1990;2(2):79–82.

    CAS  Google Scholar 

  • Gold M. Update on fractional laser technology. J Clin Aesthet Dermatol. 2010;3:42–50.

    Google Scholar 

  • Gold MH, Sensing W, Biron J. Fractional Q-switched 1,064-nm laser for the treatment of photoaged-photodamaged skin. J Cosmet Laser Ther. 2014;16(2):69–76.

    CrossRef  PubMed  Google Scholar 

  • Hantash BM, Bedi VP, Sudireddy V, Struck SK, Herron GS, Chan KF. Laser-induced transepidermal elimination of dermal content by fractional photothermolysis. J Biomed Opt. 2006;11:41–115.

    CrossRef  Google Scholar 

  • Hong JS, Park SY, Seo KK, Bl G, Hwang EJ, Park GY, Eun HC. Long pulsed 1064 nm Nd:YAG laser treatment for wrinkle reduction and skin laxity:evaluation of new parameters. Int J Dermatol. 2015;54(9):e345–50.

    CAS  CrossRef  PubMed  Google Scholar 

  • Hsu TS, Zelickson B, Dover JS, Kilmer S, Burns J, Hurza G, Brown DB, Bernstein EF. Multicenter study of the safety and efficacy of 585 nm pulsed-dye laser for the non-ablative treatment of facial rhytids. Dermatol Surg. 2005;31(1):1–9.

    CAS  CrossRef  PubMed  Google Scholar 

  • Jih MH, Goldberg LH, Kimyai-Asadi A. Fractional photothermolysis for photoaging of hands. Dermatol Surg. 2008;34(1):73–8.

    CAS  CrossRef  PubMed  Google Scholar 

  • Jun HJ, Kim SM, Choi WJ, Cho SH, Lee JD, Kim HS. A split-face, evaluator-blind randomized study on the early effects of Q-switched Nd:YAG laser versus Er:YAG micropeel in light solar lentigines in Asians. J Cosmet Laser Ther. 2014;16(2):83–8.

    CrossRef  PubMed  Google Scholar 

  • Kauvar AN. Fractional non-ablative laser resurfacing: is there a skin tightening effect? Dermatol Surg. 2014;40(suppl 12):S157–63.

    CrossRef  PubMed  Google Scholar 

  • Kishi K, Okabe K, Ninomiya R, Konno E, Hattori N, Kasube K, Imanish N, Nakajima H, Nakajima T. Early serial Q-switched ruby laser therapy for medium-sized to giant congenital melanocytic naevi. Br J Dermatol. 2009;161(2):345–52.

    CAS  CrossRef  PubMed  Google Scholar 

  • Kligman LH, Kligman AM. Photoaging. In: Fitzpatrick TB, editor. Dermatology in general medicine. New York: McGraw-Hill Co; 1986. p. 1470–5.

    Google Scholar 

  • Krutman J, Gilchrest B. Skin aging. Berlin: Springer; 2006. p. 15–24.

    Google Scholar 

  • Krutmann J. Ultraviolet A radiation-induced biological effects in human skin: relevance for photoaging and photodermatosis. J Derm Sci. 2000;23:S22–6.

    CAS  CrossRef  Google Scholar 

  • Laubach HJ, Tannous Z, Anderson RR, Manstein D. Skin responses to fractional photothermolysis. Lasers Surg Med. 2006;38:142–9.

    CrossRef  PubMed  Google Scholar 

  • Lee MC, Hu S, Chen MC, Shih YC, Huang YL, Lee SH. Skin rejuvenation with 1,064-nm Q-switched Nd:YAG laser in Asian patients. Dermatol Surg. 2009;35(6):929–32.

    CAS  CrossRef  PubMed  Google Scholar 

  • Luebberding S, Alexiades-Armenakas MR. Fractional, non-ablative Q-switched 1,064 neodymium YAG laser to rejuvenate photoaged skin: a pilot case series. J Drugs Dermatol. 2012;11:1300–4.

    Google Scholar 

  • Lupton JR, Williams CM, Alster TS. laser skin resufacing using a 1540 nm erbium glass laser: a clinical and histological analysis. Dermatol Surg. 2002;28(9):833–5.

    Google Scholar 

  • Manstein D, Herron GS, Sink RK, Tanner H, Anderson RR. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 2004;34(5):426–38.

    CrossRef  PubMed  Google Scholar 

  • Marmon S, Shek SY, Yeung CK, Chan NP, Chan JC. Evaluation of the safety and efficacy of the 1440-nm laser in the treatment of photodamage in Asian skin. Lasers Surg Med. 2014;46(5):375–9.

    CrossRef  PubMed  Google Scholar 

  • Miller L, Mishra V, Alsaad S, Winstanley D, Blalock T, Tingey C, Qui J, Romine S. Ross EV Clinical evaluation of a non-ablative 1940 nm fractional laser. J Drugs Dermatol. 2014;13(11):1324–9.

    PubMed  Google Scholar 

  • Orringer JS, Voorhees JJ, Hamilton T, Hammerberg C, Kang S, Johnson TM, Karimipour DJ, Fischer G. Dermal matrix remodelling aftter non-ablative laser therapy. J Am Acad Dermatol. 2005;53(5):775–82.

    CrossRef  PubMed  Google Scholar 

  • Paasch U. Histological epidermal and dermal changes of 1064-nm Q-Switched and fractionated pulses. Abstract ASLMS 2014, Phoenix, April 6, 2014.

    Google Scholar 

  • Paul M, Blugerman G, Kreindel M, Mulholland RS. Three –dimensional radiofrequency tissue tightening: a proposed mechanism and applications for body contouring. Aesthetic Plast Surg. 2011;35(1):87–95.

    CrossRef  PubMed  Google Scholar 

  • Polla LL, Margolis RJ, Dover JS, Whitaker D, Murphy GF, Jacques SL, Anderson RR. Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin. J Invest Dermatol. 1987;89(3):281–6.

    CAS  CrossRef  PubMed  Google Scholar 

  • Rabe JH, Mamelak AJ, McElgunn PJ, Wl M, Saunder DN. Photo aging: mechanisms and repair. J Am Acad Dermatol. 2006;55(1):1–19.

    CrossRef  PubMed  Google Scholar 

  • Rahman Z, Alam M, Dover JS. Fractional Laser treatment for pigmentation and texture improvement. Skin Therapy Lett. 2006;11(9):7–11.

    CAS  PubMed  Google Scholar 

  • Rijken F, Bruijnzeel PLB. The pathogenesis of photoaging: the role of neutrophils and neutrophil-derived enzymes. J Invest Dermatol. 2009;14:62–72.

    Google Scholar 

  • Rinaldi F. Laser: a review. Clin Dermatol. 2008;26(6):590–601.

    CrossRef  PubMed  Google Scholar 

  • Rivera AE. Acne scarring. J Am Acad Dermatol. 2008;59:659–76.

    CrossRef  PubMed  Google Scholar 

  • Sadick N. Advances in cosmetic dermatology, an issue of dermatologic clinics. Nils Kreuger. Amsterdam, Netherlands; 2014.

    Google Scholar 

  • Saedi N, Jalian HR, Petelin A, Zachary C. Fractionation: past, present, future. Semin Cutan Med Surg. 2012;31(2):105–9.

    CAS  CrossRef  PubMed  Google Scholar 

  • Santiagos AJ, Dover JS, Arndt KA. Laser treatment of pigmented lesions −2000: how far have we gone. Arch Dermatol. 2000;136:915–21.

    Google Scholar 

  • Somyas K, Somsak K, Suntharee K, Pannadda L, Sansanee W. An effective treatment of dark lip by Frequency doubled Q switched NdYAG laser. Dermatol Surg. 2001;27:37–40.

    Google Scholar 

  • Stratigos AJ, Js D. Overview of lasers and their properties. Dermatol Ther. 2000;13:2–16.

    CrossRef  Google Scholar 

  • Tanzi EL, Alster TS. Comparison of a 1450-nm diode laser and a 1320-nm Nd : YAG laser in the treatment of atrophic facial scars: A prospective clinical and histologic study. Dermatol Surg. 2004;30:152–7.

    PubMed  Google Scholar 

  • Tierney EP, Kouba DJ, Hanke CW. Review of fractional photothermolysis: treatment indications and efficacy. Dermatol Surg. 2009;35(10):1445–61.

    CAS  CrossRef  PubMed  Google Scholar 

  • Wanner M, Tanzi EL, Alster TS. Fractional photothermolysis: treatment of facial and nonfacial cutaneous photodamage with a 1550 nm erbium-doped fiber laser. Dermatol Surg. 2007;33(1):23–8.

    CAS  PubMed  Google Scholar 

  • Weiss RA, Weiss MA, Beasley KL, Munavalli G. Our approach to non-ablative treatment of photoaging. Lasers Surg Med. 2005;37(1):2–8.

    CrossRef  PubMed  Google Scholar 

  • Weng Y, Dang Y, Ye X, Liu N, Zhang Z, Ren Q. Investigation of irradiation by different non-ablative lasers on primary cultured skin fibrobalsts. Clin Exp Dermatol. 2011;36(6):655–60.

    CAS  CrossRef  PubMed  Google Scholar 

  • Wu DC, Fletcher L, Guiha I, Goldman MP. Evaluation of the safety and efficacy of the picosecond alexandrite laser with specialized lens array for the treatment of photoaging décolletage. Lasers Surg Med. 48(2):188–92. doi:10.1002/lsm.22427. (Epub ahead of print).

    Google Scholar 

  • Yaar M, Eller MS, Gilchrest BA. Fifty years of skin aging. J Investig Dermatol Symp Proc. 2002;7(1):51–8.

    CrossRef  PubMed  Google Scholar 

  • Zelickson BD, Kilmer SJ, Bernstein E, Chotzen VA, Dock J, Mehregan D, Coles C. Pulsed dye laser therapy for sun damaged skin. Lasers Surg Med. 1999;25:229–36.

    CAS  CrossRef  PubMed  Google Scholar 

  • Zhenxiao Z, Aie X, Yuzhi J, Xiaodong W, Xiangiang J, Jing S, Han Z, Junhui Z, Xiaojun Z, Yanjun Z. Exploring the role of a non-ablative laser (1320 nm cooltouch laser) in skin photorejuvenation. Skin Res Technol. 2011;17(4):505–9.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Angelo-Khattar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Angelo-Khattar, M. (2018). Non-ablative Lasers for Photorejuvenation. In: Issa, M., Tamura, B. (eds) Lasers, Lights and Other Technologies. Clinical Approaches and Procedures in Cosmetic Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-16799-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16799-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16798-5

  • Online ISBN: 978-3-319-16799-2

  • eBook Packages: MedicineReference Module Medicine