Skip to main content

Laser on Hair Regrowth

  • Reference work entry
  • First Online:
Lasers, Lights and Other Technologies

Abstract

Alopecia is a common disorder affecting more than half of the population worldwide. There is an urgent need to investigate alternative treatment options, while there are still a few therapeutics options for different types of alopecia in the market. The photobiomodulation phenomenon followed by hair growth was first described in 1967 by Professor Endre Mester, an Hungarian physician, the pioneer of laser medicine. For decades, clinical studies have been conducted to evaluate the efficacy, mechanism of action, and risks of using Low-level laser therapy - LLLT (collimated or non-collimated) in different forms of hair loss as a further treatment option. This chapter will present the clinical studies conducted with LLLT on female pattern hair loss (FPHL), male pattern hair loss (MPHL), alopecia areata (AA), and chemotherapy-induced alopecia (CIA) investigated in several databases including PubMed, Google Scholar, Medline, Embase, and Cochrane. At the end of this chapter, the authors concluded that LLLT may be a promising treatment option for patients who do not respond to conventional treatments and who do not want to undergo hair transplantation. This technology appears to work better for some people than others. Factors predicting who will get the most benefit need to be determined. Larger, longer-term placebo-controlled studies are needed to confirm these findings and reinforce the efficacy of the LLLT in those patients, generating, therefore, more consistent protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al-Mutairi N. 308-nm excimer laser for the treatment of alopecia areata. Dermatol Surg. 2007;33(12):1483–7.

    Article  CAS  PubMed  Google Scholar 

  • Al-Mutairi N. 308-nm excimer laser for the treatment of alopecia areata in children. Pediatr Dermatol. 2009;26(5):547–50.

    Article  PubMed  Google Scholar 

  • Avram MR, Rogers NE. The use of low-level light for hair growth: part I. J Cosmet Laser Ther. 2010;12(2):116.

    Article  Google Scholar 

  • Avram MR, Leonard Jr RT, Epstein ES, Williams JL, Bauman AJ. The current role of laser/light sources in the treatment of male and female pattern hair loss. J Cosmet Laser Ther. 2007;9(1):27–8.

    Article  PubMed  Google Scholar 

  • Blumeyer A, Tosti A, Messenger A, Reygagne P, del Marmo V, et al. Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men. JDDG. 2011;9(Suppl.6):S1–S57.

    Article  PubMed  Google Scholar 

  • Bouzari N, Firooz AR. Lasers may induce terminal hair growth. Dermatol Surg. 2006;32:460.

    CAS  PubMed  Google Scholar 

  • Byun JW, Moon JH, Bang CY, Shin J, Choi GS. Effectiveness of 308-nm excimer laser therapy in treating alopecia areata, determined by examining the treated sides of selected alopecic patches. Dermatology. 2015;231(1):70–6.

    Article  CAS  PubMed  Google Scholar 

  • Chung PS, Kim YC, Chung MS, Jung SO, Ree CK. The effect of low-power laser on the murine hair growth. J Korean Soc Plastic Reconstruct Surg. 2004;31:1–8.

    Google Scholar 

  • Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516–33.

    Article  PubMed  Google Scholar 

  • Desai S, Mahmoud BH, Bhatia AC, Hamzavi IH. Paradoxical hypertrichosis after laser therapy: a review. Dermatol Surg. 2010;36(3):291–8.

    Article  CAS  PubMed  Google Scholar 

  • Gundogan C, Greve B, Raulin C. Treatment of alopecia areata with the 308-nm xenon chloride excimer laser: case report of two successful treatments with the excimer laser. Lasers Surg Med. 2004;34(2):86–90.

    Article  PubMed  Google Scholar 

  • Hawkins-Evans D, Abrahamse H. Efficacy of three laser wavelengths for in vitro wound healing. Photodermatol Photoimunol Photomed. 2008a;24(4):199–210.

    Article  Google Scholar 

  • Hawkins-Evans D, Abrahamse H. Efficacy of three laser wavelengths for in vitro wound healing. Photodermatol Photoimunol Photomed. 2008b;24(4):199–210.

    Article  Google Scholar 

  • Jimenez JJ, Wikramanayake TC, Bergfeld W, Maria Hordinsky M, Hickman JG, Hamblin MR, Lawrence A, Schachner LA. Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a multicenter, randomized, sham device-controlled double-blind study. Am J Clin Dermatol. 2014;15:115–27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kandyba E, Kobielak K. Wnt7b is an important intrinsic regulator of hair follicle stem cell homeostasis and hair follicle cycling. Stem Cells. 2013;32(4):886–901.

    Article  Google Scholar 

  • Kandyba E, Hazen VM, Kobielak A, Butler SJ, Kobielak K. Smad1&5 but not Smad8 establish stem cell quiescence which is critical to transform the premature hair follicle during morphogenesis towards the postnatal state. Stem Cells. 2013;32(2):534–47.

    Article  Google Scholar 

  • Karu TI. Photobiological fundamentals of low-power laser therapy. J Quantum Electron. 1987;23(10):1703–17.

    Article  Google Scholar 

  • Karu TI. Molecular mechanisms of therapeutic effect of low intensity laser irradiation. Laser Life Sci. 1988;2(1):53–74.

    Google Scholar 

  • Karu T. Photobiology of low-power laser effects. Health Phys. 1989;56(5):691–704.

    Article  CAS  PubMed  Google Scholar 

  • Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg. 2005;23(4):355–61.

    Article  CAS  PubMed  Google Scholar 

  • Kim WS, et al. Fractional photothermolysis laser treatment of MPHL. Dermatol Surg. 2011;37:41–51.

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Choi JW, Kim JY, Shin JW, Lee SJ, Huh CH. Dermatol Surg. 2013;39(8):1177–83.

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Kim NJ, Youn JI. Evaluation of wavelength-dependent hair growth effects on low-level laser therapy: an experimental animal study. Lasers Med Sci. 2015;30(6):1703–9.

    Article  PubMed  Google Scholar 

  • Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol. 2003;163(3):609–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobielak K, et al. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. PNAS. 2007;104(24):10063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobielak K, et al. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation. PNAS. 2013;110(4):1351–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreisler M, Christoffers AB, Willershausen B, d'Hoedt B. Low-level 809nm GaAlAs laser irradiation increases the proliferation rate of human laryngeal carcinoma cells in vitro. Lasers Med Sci. 2003;18(2):100–3.

    Article  CAS  PubMed  Google Scholar 

  • Leavitt M, Charles G, Heyman E, Michaels D. HairMax LaserComb laser phototherapy device in the treatment of male androgenetic alopecia: a randomized, double-blind, sham device-controlled, multicentre trial. Clin Drug Investig. 2009;29(5):283–92.

    Article  PubMed  Google Scholar 

  • Lee GY, Lee SJ, Kim WS. The effect of a 1550 nm fractional erbium-glass laser in female pattern hair loss. J Eur Acad Dermatol Venereol. 2011;25(12):1450–4.

    Article  PubMed  Google Scholar 

  • Lin TY, Dierickx CC, Campos VB, Farinelli WA, Rosenthal J, Anderson RR. Reduction of regrowing hair shaft size and pigmentation after ruby and diode laser treatment. Arch Dermatol Res. 2000;292(2–3):60–7.

    Article  CAS  PubMed  Google Scholar 

  • Lubart R, Wollman Y, Friedmann H, Rochkind S, Laulicht I. Effects of visible and near-infrared lasers on cell cultures. J Photochem Photobiol B Biol. 1992;12(3):305–10.

    Article  CAS  Google Scholar 

  • McElwee KJ. Shapiro JS. Promising therapies for treating and/or preventing androgenic alopecia Skin Therapy Lett. 2012;17(6):1–4.

    CAS  PubMed  Google Scholar 

  • Mester E, Szende B, Gartner P. The effect of laser beams on the growth of hair in mice. Radiobiol Radiother. 1968;9(5):621–6.

    CAS  Google Scholar 

  • Mognato M, Squizato F, Facchin F, Zaghetto L, Corti L. Cell growth modulation of human cells irradiated in vitro with Low-level laser therapy. Photomed Laser Surg. 2004;22(6):523–6.

    Article  PubMed  Google Scholar 

  • Moreno-Arias G, Castelo-Branco C, Ferrando J. Paradoxical effect after IPL photoepilation. Dermatol Surg. 2002;28(11):1013–6.

    PubMed  Google Scholar 

  • Ohtsuki A, Hasegawa T, Ikeda S. Treatment of alopecia areata with 308-nm excimer lamp. J Dermatol. 2010;37(12):1032–5.

    Article  PubMed  Google Scholar 

  • Ohtsuki A, Hasegawa T, Komiyama E, Takagi A, Kawasaki J, Ikeda S. 308-nm excimer lamp for the treatment of alopecia areata: clinical trial on 16 cases. Indian J Dermatol. 2013;58(4):326.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira DAAP, Oliveira RF, Zangaro RA, Soares CP. Evaluation of low-level laser therapy of osteoblastic cell. Photomed Laser Surg. 2008;26(4):401–4.

    Article  PubMed  Google Scholar 

  • Pöntinen PJ, Aaltokallio T, Kolari PJ. Comparative effects of exposure to different light sources (He-Ne laser, InGaAl diode laser, a specific type of noncoherent LED) on skin blood flow for the head. Acupunct Electrother Res. 1996;21(2):105–18.

    PubMed  Google Scholar 

  • Rangwala S, Rashid RM. Alopecia: a review of laser and light therapies. Dermatology Online Journal. 2012;18(2):3.

    PubMed  Google Scholar 

  • Raulin C, Gündogan C, Greve B, Gebert S. Excimer laser therapy of alopecia areata--side-by-side evaluation of a representative area. J Dtsch Dermatol Ges. 2005;3(7):524–6.

    Article  PubMed  Google Scholar 

  • Shukla S, Sahu K, Verma Y, Rao KD, Dube A, Gupta PK. Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice. Skin Pharmacol and Physiol. 2010;23:79–85.

    Article  CAS  Google Scholar 

  • Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg. 2005;23(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  • Stillman L. Reply to: the use of low-level light for hair growth: part I. J. Cosmet. Laser Ther. 2010;12(2):116.

    Article  PubMed  Google Scholar 

  • Tosti A, Bellavista S, Iorizzo M. Alopecia areata: a long term follow-up study of 191 patients. J Am Acad Dermatol. 2006;55(3):438–41.

    Article  PubMed  Google Scholar 

  • Touma DJ, Rohrer TE. Persistent hair loss 60 months after a single treatment with a 3-millisecond alexandrite (755 nm) laser. Journal of the American Academy of Dermatology. 2004;50(2):324–5.

    Article  PubMed  Google Scholar 

  • Trelles MA, Mayayo E, Cisneros JL. Tratamiento de la alopecia areata con laser HeNe. Investigacion Y Clinica Laser. 1984;1:15–7.

    Google Scholar 

  • Tsuboi R, Itami S, Invi S, et al. Guidelines for the management of androgenetic alopecia. Journal of Dermatology. 2012;39:113–20.

    Article  CAS  PubMed  Google Scholar 

  • van Zuuren EJ, Fedorowicz Z, Carter B. Evidence-based treatments for female pattern hair loss: a summary of a Cochrane systematic review. Br J Dermatol. 2012;167(5):995–1010.

    Article  PubMed  Google Scholar 

  • Waiz M, Saleh AZ, Hayani R, Jubory SO. Use of the pulsed infrared diode laser (904 nm) in the treatment of alopecia areata. J Cosmet Laser Ther. 2006;8(1):27–30.

    Article  PubMed  Google Scholar 

  • Wikramanayake TC, Rodriguez R, Choudhary S, Mauro LM, Nouri K, Schachner LA, Jimenez JJ, Leavitt M, Charles G, Heyman E, Michaels D. HairMax LaserComb laser phototherapy device in the treatment of male androgenetic alopecia: a randomized, double-blind, sham device-controlled, multicentre trial. Clin Drug Investig. 2009;29(5):283–92.

    Article  Google Scholar 

  • Wikramanayake TC, Villasante AC, Mauro LM, Nouri K, Schachner LA, Perez CI, Jimenez JJ. Low-level laser treatment accelerated hair regrowth in a rat model of chemotherapy-induced alopecia (CIA). Lasers Med Sci. 2013;28(3):701–6.

    Article  PubMed  Google Scholar 

  • Yamazaki M, Miura Y, Tsuboi R, Ogawa H. Linear polarized infrared irradiation using SuperLizer is an effective treatment for multiple-type alopecia areata. Int J Dermatol. 2003;42(9):738–40.

    Article  PubMed  Google Scholar 

  • Ye JN, et al. Pili bigeminy induced by low fluence therapy with hair removal Alexandrite and Ruby lasers. Dermatol Surg. 1999;25(12):969.

    Article  CAS  PubMed  Google Scholar 

  • Yoo KH, Kim MN, Kim BJ. Treatment of alopecia areata with fractional photothermolysis laser. 2009. Disponível em www.lutronic.com. Acesso em 11 July 2012.

  • Zarei M, Wikramanayake TC, Falto-Aizpurua L, Schachner LA, Jimenez JJ. Low level laser therapy and hair regrowth: an evidence-based review. Lasers Med Sci. 2016;31(2):363–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Roberto Antonio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Antonio, J.R., Antonio, C.R., Ferreira Coutinho, A.L. (2018). Laser on Hair Regrowth. In: Issa, M., Tamura, B. (eds) Lasers, Lights and Other Technologies. Clinical Approaches and Procedures in Cosmetic Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-16799-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16799-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16798-5

  • Online ISBN: 978-3-319-16799-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics