Advertisement

Minimally Invasive Transforaminal Lumbar Interbody Fusion

  • Alfred T. Ogden
  • Richard G. FesslerEmail author
Living reference work entry
  • 63 Downloads

Abstract

During the past 75 years, surgical technique, spinal instruments and instrumentation, and molecular biology have advanced the notion of lumbar interbody fusion from what Mercer [1] described, in 1936, as perhaps “technically impossible” to a routine operation with a high rate of success. Pedicle screw augmentation of the posterior lateral interbody fusion (PLIF) described by Cloward [2] made possible a decompressive operation and arthrodesis with “360°” of stabilization from a single posterior approach. The transforaminal lumbar interbody fusion (TLIF) described by Harms and Rolinger [3] in 1982 offered the same biomechanical result as the PLIF but has gained more widespread popularity because it requires less manipulation of neural structures during graft placement. Although both the PLIF and TLIF are viable using minimally invasive techniques, the minimally invasive TLIF (miTLIF) has become the dominant minimally invasive lumbar fusion procedure.

Keywords

Indications Advantages Evidence-based assessments Advantages Outcomes Preoperative imaging Preoperative imaging Equipment Equipment Operating room set-up and positioning Localization and exposure Laminotomy/facetectomy Interbody fusion Pedicle screw fixation 

References

  1. 1.
    Mercer R. Spondylolisthesis with a description of a new method of operative treatment and notes of ten cases. Edinb Med J. 1936;43:545–72.Google Scholar
  2. 2.
    Cloward RB. The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care. J Neurosurg. 1953;10:154–68.CrossRefPubMedGoogle Scholar
  3. 3.
    Harms J, Rolinger H. A one-stager procedure in operative treatment of spondylolistheses: dorsal traction-reposition and anterior fusion. Z Orthop Ihre Grenzgeb. 1982;120:343–7. author’s transl.CrossRefPubMedGoogle Scholar
  4. 4.
    Chastain CA, Eck JC, Hodges SD, et al. Transforaminal lumbar interbody fusion: a retrospective study of long-term pain relief and fusion outcomes. Orthopedics. 2007;30:389–92.PubMedGoogle Scholar
  5. 5.
    Gill K, Blumenthal SL. Posterior lumbar interbody fusion. A 2-year follow-up of 238 patients. Acta Orthop Scand Suppl. 1993;251:108–10.CrossRefPubMedGoogle Scholar
  6. 6.
    Hackenberg L, Halm H, Bullmann V, et al. Transforaminal lumbar interbody fusion: a safe technique with satisfactory three to five year results. Eur Spine J. 2005;14:551–8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Haid Jr RW, Branch Jr CL, Alexander JT, et al. Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J. 2004;4:527–38. discussion 38–39.CrossRefPubMedGoogle Scholar
  8. 8.
    Lauber S, Schulte TL, Liljenqvist U, et al. Clinical and radiologic 2–4-year results of transforaminal lumbar interbody fusion in degenerative and isthmic spondylolisthesis grades 1 and 2. Spine. 2006;31:1693–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Okuda S, Miyauchi A, Oda T, et al. Surgical complications of posterior lumbar interbody fusion with total facetectomy in 251 patients. J Neurosurg Spine. 2006;4:304–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Okuda S, Oda T, Miyauchi A, et al. Surgical outcomes of posterior lumbar interbody fusion in elderly patients. J Bone Joint Surg Am. 2006;88:2714–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Potter BK, Freedman BA, Verwiebe EG, et al. Transforaminal lumbar interbody fusion: clinical and radiographic results and complications in 100 consecutive patients. J Spinal Disord Tech. 2005;18:337–46.CrossRefPubMedGoogle Scholar
  12. 12.
    Rosenberg WS, Mummaneni PV. Transforaminal lumbar interbody fusion: technique, complications, and early results. Neurosurgery. 2001;48:569–75.CrossRefPubMedGoogle Scholar
  13. 13.
    Blumenthal S, McAfee PC, Guyer RD, et al. A prospective, randomized, multicenter Food and Drug Administration investigational device exemptions study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part I: evaluation of clinical outcomes. Spine. 2005;30:1565–75. discussion E387-E391.CrossRefPubMedGoogle Scholar
  14. 14.
    Fritzell P, Hagg O, Wessberg P, et al. 2001 Volvo award winner in clinical studies: lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish Lumbar Spine Study Group. Spine. 2001;26:2521–32. discussion 32–34.CrossRefPubMedGoogle Scholar
  15. 15.
    Glassman S, Gornet MF, Branch C, et al. MOS short form 36 and Oswestry disability index outcomes in lumbar fusion: a multicenter experience. Spine J. 2006;6:21–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Polly Jr DW, Glassman SD, Schwender JD, et al. SF-36 PCS benefit-cost ratio of lumbar fusion comparison to other surgical interventions: a thought experiment. Spine. 2007;32:S20–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Weinstein JN, Lurie JD, Tosteson TD, et al. Surgical versus nonsurgical treatment for lumbar degenerative spondylolisthesis. N Engl J Med. 2007;356:2257–70.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zigler J, Delamarter R, Spivak JM, et al. Results of the prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of the ProDisc-L total disc replacement versus circumferential fusion for the treatment of 1-level degenerative disc disease. Spine. 2007;32:1155–62. discussion 63.CrossRefPubMedGoogle Scholar
  19. 19.
    Ekman P, Moller H, Tullberg T, et al. Posterior lumbar interbody fusion versus posterolateral fusion in adult isthmic spondylolisthesis. Spine. 2007;32:2178–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Videbaek TS, Christensen FB, Soegaard R, et al. Circumferential fusion improves outcome in comparison with instrumented posterolateral fusion: long-term results of a randomized clinical trial. Spine. 2006;31:2875–80.CrossRefPubMedGoogle Scholar
  21. 21.
    Fessler RG. Minimally invasive percutaneous posterior lumbar interbody fusion. Neurosurgery. 2003;52:1512.CrossRefPubMedGoogle Scholar
  22. 22.
    Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine. 2003;28:S26–35.PubMedGoogle Scholar
  23. 23.
    Holly LT, Schwender JD, Rouben DP, et al. Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus. 2006;20:E6.CrossRefPubMedGoogle Scholar
  24. 24.
    Kim KT, Lee SH, Lee YH, et al. Clinical outcomes of 3 fusion methods through the posterior approach in the lumbar spine. Spine. 2006;31:1351–7. discussion 8.CrossRefPubMedGoogle Scholar
  25. 25.
    Scheufler KM, Dohmen H, Vougioukas VI. Percutaneous transforaminal lumbar interbody fusion for the treatment of degenerative lumbar instability. Neurosurgery. 2007;60:203–12. discussion 12–13.PubMedGoogle Scholar
  26. 26.
    Schwender JD, Holly LT, Rouben DP, et al. Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech. 2005;18(Suppl):S1–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Cloward RB. Posterior lumbar interbody fusion updated. Clin Orthop Relat Res 1985;193:16–19Google Scholar
  28. 28.
    Hutter CG. Spinal stenosis and posterior lumbar interbody fusion. Clin Orthop Relat Res 1985;193:103–114Google Scholar
  29. 29.
    Trouillier H, Birkenmaier C, Rauch A, et al. Posterior lumbar interbody fusion (PLIF) with cages and local bone graft in the treatment of spinal stenosis. Acta Orthop Belg. 2006;72:460–6.PubMedGoogle Scholar
  30. 30.
    Ekman P, Moller H, Hedlund R. The long-term effect of posterolateral fusion in adult isthmic spondylolisthesis: a randomized controlled study. Spine J. 2005;5:36–44.CrossRefPubMedGoogle Scholar
  31. 31.
    Miyakoshi N, Abe E, Shimada Y, et al. Outcome of one-level posterior lumbar interbody fusion for spondylolisthesis and postoperative intervertebral disc degeneration adjacent to the fusion. Spine. 2000;25:1837–42.CrossRefPubMedGoogle Scholar
  32. 32.
    Molinari RW, Sloboda JF, Arrington EC. Low-grade isthmic spondylolisthesis treated with instrumented posterior lumbar interbody fusion in U.S. servicemen. J Spinal Disord Tech. 2005;18(Suppl):S24–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Moller H, Hedlund R. Instrumented and noninstrumented posterolateral fusion in adult spondylolisthesis – a prospective randomized study: part 2. Spine. 2000;25:1716–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Thomsen K, Christensen FB, Eiskjaer SP, et al. 1997 Volvo Award winner in clinical studies. The effect of pedicle screw instrumentation on functional outcome and fusion rates in posterolateral lumbar spinal fusion: a prospective, randomized clinical study. Spine. 1997;22:2813–22.CrossRefPubMedGoogle Scholar
  35. 35.
    Duggal N, Mendiondo I, Pares HR, et al. Anterior lumbar interbody fusion for treatment of failed back surgery syndrome: an outcome analysis. Neurosurgery. 2004;54:636–43. discussion 43–44.CrossRefPubMedGoogle Scholar
  36. 36.
    Markwalder TM, Battaglia M. Failed back surgery syndrome. Part II: surgical techniques, implant choice, and operative results in 171 patients with instability of the lumbar spine. Acta Neurochir (Wien). 1993;123:129–34.CrossRefGoogle Scholar
  37. 37.
    Skaf G, Bouclaous C, Alaraj A, et al. Clinical outcome of surgical treatment of failed back surgery syndrome. Surg Neurol. 2005;64:483–8. discussion 8–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Chitnavis B, Barbagallo G, Selway R, et al. Posterior lumbar interbody fusion for revision disc surgery: review of 50 cases in which carbon fiber cages were implanted. J Neurosurg. 2001;95:190–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Choi JY, Choi YW, Sung KH. Anterior lumbar interbody fusion in patients with a previous discectomy: minimum 2-year follow-up. J Spinal Disord Tech. 2005;18:347–52.CrossRefPubMedGoogle Scholar
  40. 40.
    Lee SH, Kang BU, Jeon SH, et al. Revision surgery of the lumbar spine: anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation. J Neurosurg Spine. 2006;5:228–33.CrossRefPubMedGoogle Scholar
  41. 41.
    Vishteh AG, Dickman CA. Anterior lumbar microdiscectomy and interbody fusion for the treatment of recurrent disc herniation. Neurosurgery. 2001;48:334–7.PubMedGoogle Scholar
  42. 42.
    Folman Y, Lee SH, Silvera JR, et al. Posterior lumbar interbody fusion for degenerative disc disease using a minimally invasive B-twin expandable spinal spacer: a multicenter study. J Spinal Disord Tech. 2003;16:455–60.CrossRefPubMedGoogle Scholar
  43. 43.
    Leufven C, Nordwall A. Management of chronic disabling low back pain with 360 degrees fusion. Results from pain provocation test and concurrent posterior lumbar interbody fusion, posterolateral fusion, and pedicle screw instrumentation in patients with chronic disabling low back pain. Spine. 1999;24:2042–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Dimar JR, Glassman SD, Burkus KJ, et al. Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine. 2006;31:2534–9. discussion 40.CrossRefPubMedGoogle Scholar
  45. 45.
    Mirza SK, Deyo RA. Systematic review of randomized trials comparing lumbar fusion surgery to nonoperative care for treatment of chronic back pain. Spine. 2007;32:816–23.CrossRefPubMedGoogle Scholar
  46. 46.
    Fairbank J, Frost H, Wilson-MacDonald J, et al. Randomised controlled trial to compare surgical stabilisation of the lumbar spine with an intensive rehabilitation programme for patients with chronic low back pain: the MRC spine stabilisation trial. BMJ. 2005;330:1233.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Brox JI, Reikeras O, Nygaard O, et al. Lumbar instrumented fusion compared with cognitive intervention and exercises in patients with chronic back pain after previous surgery for disc herniation: a prospective randomized controlled study. Pain. 2006;122:145–55.CrossRefPubMedGoogle Scholar
  48. 48.
    Brox JI, Sorensen R, Friis A, et al. Randomized clinical trial of lumbar instrumented fusion and cognitive intervention and exercises in patients with chronic low back pain and disc degeneration. Spine. 2003;28:1913–21.CrossRefPubMedGoogle Scholar
  49. 49.
    Hagg O, Fritzell P. Re: Brox JI, Sorensen R, Friis A, et al. Randomized clinical trial of lumbar instrumented fusion and cognitive intervention and exercises in patients with chronic low back pain and disc degeneration. Spine. 2003; 28:1913–1921. Spine 2004;29:1160–1161.Google Scholar
  50. 50.
    Moller H, Hedlund R. Surgery versus conservative management in adult isthmic spondylolisthesis – a prospective randomized study: part 1. Spine. 2000;25:1711–5.CrossRefPubMedGoogle Scholar
  51. 51.
    Isaacs RE, Podichetty VK, Santiago P, et al. Minimally invasive microendoscopy-assisted transforaminal lumbar interbody fusion with instrumentation. J Neurosurg Spine. 2005;3:98–105.CrossRefPubMedGoogle Scholar
  52. 52.
    Park Y, Ha JW. Comparison of one-level posterior lumbar interbody fusion performed with a minimally invasive approach or a traditional open approach. Spine. 2007;32:537–43.CrossRefPubMedGoogle Scholar
  53. 53.
    Gejo R, Matsui H, Kawaguchi Y, et al. Serial changes in trunk muscle performance after posterior lumbar surgery. Spine. 1999;24:1023–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. A histologic and enzymatic analysis. Spine. 1996;21:941–4.CrossRefPubMedGoogle Scholar
  55. 55.
    Kawaguchi Y, Matsui H, Tsuji H. Back muscle injury after posterior lumbar spine surgery. Part 2: histologic and histochemical analyses in humans. Spine. 1994;19:2598–602.CrossRefPubMedGoogle Scholar
  56. 56.
    Kawaguchi Y, Matsui H, Tsuji H. Changes in serum creatine phosphokinase MM isoenzyme after lumbar spine surgery. Spine. 1997;22:1018–23.CrossRefPubMedGoogle Scholar
  57. 57.
    Mayer TG, Vanharanta H, Gatchel RJ, et al. Comparison of CT scan muscle measurements and isokinetic trunk strength in postoperative patients. Spine. 1989;14:33–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Sihvonen T, Herno A, Paljarvi L, et al. Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine. 1993;18:575–81.CrossRefPubMedGoogle Scholar
  59. 59.
    Stevens KJ, Spenciner DB, Griffiths KL, et al. Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies. J Spinal Disord Tech. 2006;19:77–86.CrossRefPubMedGoogle Scholar
  60. 60.
    Kim KT, Lee SH, Suk KS, et al. The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine. 2006;31:712–6.CrossRefPubMedGoogle Scholar
  61. 61.
    Jang JS, Lee SH. Minimally invasive transforaminal lumbar interbody fusion with ipsilateral pedicle screw and contralateral facet screw fixation. J Neurosurg Spine. 2005;3:218–23.CrossRefPubMedGoogle Scholar
  62. 62.
    Khoo LT, Fessler RG. Microendoscopic decompressive laminotomy for the treatment of lumbar stenosis. Neurosurgery. 2002;51:S146–54.PubMedGoogle Scholar
  63. 63.
    Beringer WF, Mobasser JP. Unilateral pedicle screw instrumentation for minimally invasive transforaminal lumbar interbody fusion. Neurosurg Focus. 2006;20:E4.PubMedGoogle Scholar
  64. 64.
    Deutsch H, Musacchio Jr MJ. Minimally invasive transforaminal lumbar interbody fusion with unilateral pedicle screw fixation. Neurosurg Focus. 2006;20:E10.CrossRefPubMedGoogle Scholar
  65. 65.
    Holly LT, Foley KT. Three-dimensional fluoroscopy-guided percutaneous thoracolumbar pedicle screw placement. Technical note. J Neurosurg. 2003;99:324–9.PubMedGoogle Scholar
  66. 66.
    Grutzner PA, Beutler T, Wendl K, et al. Intraoperative three-dimensional navigation for pedicle screw placement. Chirurg. 2004;75:967–75.CrossRefPubMedGoogle Scholar
  67. 67.
    Villavicencio AT, Burneikiene S, Bulsara KR, et al. Utility of computerized isocentric fluoroscopy for minimally invasive spinal surgical techniques. J Spinal Disord Tech. 2005;18:369–75.CrossRefPubMedGoogle Scholar
  68. 68.
    Shoham M, Lieberman IH, Benzel EC, et al. Robotic assisted spinal surgery – from concept to clinical practice. Comput Aided Surg. 2007;12:105–15.PubMedGoogle Scholar
  69. 69.
    O’Toole JE, Eichholy JM, Fossler GG. Surgical site infection notes after minimally invasive surgery. Journal of Neurosurgery in pressGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Neurological SurgeryNorthwestern Memorial HospitalChicagoUSA

Personalised recommendations