Interpreting Spatiotemporal Parameters, Symmetry, and Variability in Clinical Gait Analysis

Reference work entry

Abstract

Spatiotemporal parameters (STP) are widely studied variables in clinical gait analysis. Yet they often remain underutilized despite the rich information they provide about organization and control of the patient’s progress. Building on them requires a broad knowledge of the “normal” gait, before to being able to understand the impact of pathological disorders. We hope to provide information to better grasp and understand the STP while highlighting important points.

Through this chapter, we will introduce basics of the gait cycle, before considering the components for which the STP may be informative: rhythm, pace, phases, postural control, asymmetry, and variability. We will define main parameters for each component and discuss their use regarding state of the art. Then factors influencing STP will be addressed to understand how these parameters change during life, when a child learns to walk or when the advance in age-affected gait in the elderly, as well as the influence of diseases. Indeed, various pathologies affect the walk, and the most relevant STP are not always the same. We will consider Friedreich ataxia, which is a neurodegenerative disease, in which combination of cerebellar, pyramidal syndromes, and axonal neuropathy cause a rapid degeneration of the walking ability and therefore lead to various observable gait patterns. We will also illustrate how PST can be useful to document the most appropriate time for a patient to change from one assistive device to another.

The final portion will aim to give paths for clinical interpretation while thinking about the concepts of limitation and adaptation.

Keywords

Clinical gait Spatiotemporal Interpretation Variability Symmetry 

References

  1. Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26:217–238CrossRefGoogle Scholar
  2. Balasubramanian CK, Clark DJ, Gouelle A (2015) Validity of the gait variability index in older adults: effect of aging and mobility impairments. Gait Posture 41(4):941–946CrossRefGoogle Scholar
  3. Brach JS, Berlin JE, VanSwearingen JM, Newman AB, Studenski SA (2005) Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed. J Neuro Eng Rehab 2:21CrossRefGoogle Scholar
  4. Bril B, Brénière Y (1992) Postural requirements and progression velocity in young walkers. J Mot Behav 24:105–116CrossRefGoogle Scholar
  5. Dusing SC, Thorpe DE (2007) A normative sample of temporal and spatial gait parameters in children using the GAITRite electronic walkway. Gait Posture 25:135–139CrossRefGoogle Scholar
  6. Eisenhardt JR, Cook D, Pregler I, Foehl HC (1996) Changes in temporal gait characteristics and pressure distribution for bare feet versus various heel heights. Gait Posture 4(4):280–286CrossRefGoogle Scholar
  7. Gouelle A (2014) Use of functional ambulation performance score as measurement of gait ability: review. JRRD 51(5):665–674CrossRefGoogle Scholar
  8. Gouelle A, Mégrot F, Presedo A, Penneçot GF, Yelnik A (2011) Validity of functional ambulation performance score for the evaluation of spatiotemporal parameters of children’s gait. J Mot Behav 43(2):95–100CrossRefGoogle Scholar
  9. Gouelle A, Mégrot F, Presedo A, Husson I, Yelnik A, Penneçot GF (2013) The gait variability index: a new way to quantify fluctuation magnitude of spatiotemporal parameters during gait. Gait Posture 38(3):461–465CrossRefGoogle Scholar
  10. Gouelle A, Leroux J, Bredin J, Mégrot F (2016) Changes in gait variability from first steps to adulthood: normative data for the gait variability index. J Mot Behav 48(3):249–255CrossRefGoogle Scholar
  11. Gretz HR, Doering LL, Quinn J, Raftopoulos M, Nelson AJ, Zwick DE (1998) Functional ambulation performance testing of adults with down syndrome. Neurorehabilitation 11(3):211–225CrossRefGoogle Scholar
  12. Hausdorff JM (2005) Gait variability: methods, modeling and meaning. J Neuro Eng Rehab 2:19CrossRefGoogle Scholar
  13. Hausdorff JM, Zemany L, Peng C-K, Goldberger AL (1999) Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J Appl Physiol 86:1040–1047CrossRefGoogle Scholar
  14. Hof AL (1996) Scaling gait data to body size. Gait Posture 4:222–223CrossRefGoogle Scholar
  15. Hollman JH, McDade EM, Petersen RC (2011) Normative spatiotemporal gait parameters in older adults. Gait Posture 34(1):111–118CrossRefGoogle Scholar
  16. Kirtley C (2006) Clinical gait analysis: theory and practice. Churchill-Livingstone, New YorkGoogle Scholar
  17. Lauzière S, Betschart M, Aissaoui R, Nadeau S (2014) Understanding spatial and temporal gait asymmetries in individuals post stroke. Int J Phys Med Rehabil 2:3Google Scholar
  18. Lord S, Galna B, Verghese J, Coleman S, Burn D, Rochester L (2013) Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach. J Gerontol A Biol Sci Med Sci 68(7):820–827CrossRefGoogle Scholar
  19. Lord S, Galna B, Coleman S, Yarnall S, Burn D, Verghese J (2014) Cognition and gait show a selective pattern of association dominated by phenotype in incident Parkinson’s disease. Front Aging Neurosci 6:249CrossRefGoogle Scholar
  20. Maki BE (1997) Gait changes in older adults: predictors of falls or indicators of fear. J Am Geriatr Soc 45:313–320CrossRefGoogle Scholar
  21. Novacheck TF (1998) The biomechanics of running. Gait Posture 7:77–95CrossRefGoogle Scholar
  22. Paterson KL, Lythgo ND, Hill KD (2009) Gait variability in younger and older adult women is altered by overground walking protocol. Age Ageing 38(6):745–748CrossRefGoogle Scholar
  23. Patterson KK, Gage WH, Brooks D, Black SE, McIlroy WE (2010) Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait Posture 31:241–246CrossRefGoogle Scholar
  24. Perry J, Burnfield J (2010) Gait analysis: normal and pathological function, 2nd edn. Slack Incorporated, ThorofareGoogle Scholar
  25. Sekiya N, Nagasaki H, Ito H, Furuna T (1996) The invariant relationship between step length and step rate during free walking. J Hum Mov Stud 30:241–257Google Scholar
  26. Sutherland D (1997) The development of mature gait. Gait Posture 6:163–170CrossRefGoogle Scholar
  27. Vaughan CL (2003) Theories of bipedal walking: an odyssey. J Biomech 36(4):513–523.Google Scholar
  28. Verghese J, Wang C, Lipton RB, Holtzer R, Xue X (2007) Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry 78(9):929–935CrossRefGoogle Scholar
  29. Verlinden VJA, van der Geest JN, Hoogendam Y, Hofman A, Breteler MMB, Ikram MA (2013) Gait patterns in a community-dwelling population aged 50 years and older. Gait Posture 37(4):500–505CrossRefGoogle Scholar
  30. Whittle MW (2007) Gait analysis: an introduction. Butterworth-Heinemann, OxfordGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gait and Balance Academy, ProtoKineticsHavertownUSA
  2. 2.Unité Clinique d’Analyse de la Marche et du MouvementCentre de Médecine Physique et de Réadaptation pour Enfants de Bois-Larris – Croix-Rouge FrançaiseLamorlayeFrance
  3. 3.UMR CNRS 7338: Biomécanique et BioingénierieSorbonne Universités, Université de Technologie de CompiègneCompiègneFrance

Section editors and affiliations

  • Sebastian I. Wolf
    • 1
  1. 1.Movement Analysis LaboratoryClinic for Orthopedics and Trauma Surgery; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury;Heidelberg University HospitalHeidelbergGermany

Personalised recommendations