Gait Scores: Interpretations and Limitations

Reference work entry

Abstract

Gait analysis (GA) represents a fundamental method by which quantitative information is collected to aid in understanding the level of functional limitation due to pathology, observing its evolution over time and evaluating rehabilitative intervention effects. Essential to the method is the interpretation of the data provided by gait analysis by an experienced, interdisciplinary team with substantial knowledge in normal and pathologic gait. A typical gait analysis evaluation procedure could include the computing of both specific parameters (values of the plots in specific instant of the gait cycle, maximum values, range of motions, etc.) and summary measures (one of few scores which quantify the deviation of a patient’s gait pattern from normality). The use of specific parameters produces a vast amount of data and graphs; for this reason, despite its objectivity, its use could be complicated, and the data interpretation is difficult. Thus, there is a growing awareness of the need for a summary index, specifically, a single measure of the “quality” of a particular gait pattern.

Keywords

Gait analysis Kinematics Kinetics Locomotion Parameters Summary measures 

References

  1. Adair B, Rodda J, McGinley JL et al (2016) Kinematic gait deficits at the trunk and pelvis: characteristic features in children with hereditary spastic paraplegia. Dev Med Child Neurol 58:829–835Google Scholar
  2. Andersson C, Mattsson E (2001) Adults with cerebral palsy: a survey describing problems, needs, and resources, with special emphasis on locomotion. Dev Med Child Neurol 43:76–82CrossRefGoogle Scholar
  3. Assi A, Ghanem I, Lavaste F et al (2009) Gait analysis in children and uncertainty assessment for Davis protocol and Gillette Gait Index. Gait Posture 30:22–26CrossRefGoogle Scholar
  4. Baker R (2013) Measuring walking: a handbook of clinical gait analysis. Mac Keith Press, LondonGoogle Scholar
  5. Baker R, McGinley JL, Schwartz MH et al (2009) The gait profile score and movement analysis profile. Gait Posture 30:265–269CrossRefGoogle Scholar
  6. Baker R, McGinley JL, Schwartz M et al (2012) The minimal clinically important difference for the Gait Profile Score. Gait Posture 35:612–615CrossRefGoogle Scholar
  7. Barton G, Lees A, Lisboa P et al (2006) Visualisation of gait data with Kohonen self-organising neural maps. Gait Posture 24:46–53CrossRefGoogle Scholar
  8. Barton G, Lisboa P, Lees A et al (2007) Gait quality assessment using self-organising artificial neural networks. Gait Posture 25:374–379CrossRefGoogle Scholar
  9. Barton GJ, Hawken MB, Scott MA et al (2012) Movement deviation profile: a measure of distance from normality using a self-organizing neural network. Hum Mov Sci 31:284–294CrossRefGoogle Scholar
  10. Barton GJ, Hawken MB, Holmes G et al (2015) A gait index may underestimate changes of gait: a comparison of the Movement Deviation Profile and the Gait Deviation Index. Comput Methods Biomech Biomed Engin 18:57–63CrossRefGoogle Scholar
  11. Beynon S, McGinley JL, Dobson F et al (2010) Correlations of the gait profile score and the movement analysis profile relative to clinical judgments. Gait Posture 32:129–132CrossRefGoogle Scholar
  12. Brehm MA, Harlaar J, Schwartz M (2008) Effect of ankle-foot orthoses on walking efficiency and gait in children with cerebral palsy. J Rehabil Med 40:529–534CrossRefGoogle Scholar
  13. Broström EW, Esbjörnsson AC, von Heideken J et al (2013) Change in Gait Deviation Index after anti-tumour necrosis factor-α treatment in individuals with rheumatoid arthritis: a pilot study. Scand J Rheumatol 42:356–361CrossRefGoogle Scholar
  14. Caskey PM, McMulkin ML, Gordon AB et al (2014) Gait outcomes of patients with severe slipped capital femoral epiphysis after treatment by flexion-rotation osteotomy. J Pediatr Orthop 34:668–673CrossRefGoogle Scholar
  15. Celletti C, Galli M, Cimolin V et al (2013) Use of the gait profile score for the evaluation of patients with joint hypermobility syndrome/Ehlers-Danlos syndrome hypermobility type. Res Dev Disabil 34:4280–4285CrossRefGoogle Scholar
  16. Choi SJ, Chung CY, Lee KM et al (2011) Validity of gait parameters for hip flexor contracture in patients with cerebral palsy. J Neuroeng Rehabil 8:4CrossRefGoogle Scholar
  17. Cimolin V, Galli M (2014) Summary measures for clinical gait analysis: a literature review. Gait Posture 39:1005–1010CrossRefGoogle Scholar
  18. Cimolin V, Galli M, Vimercati SL et al (2011) Use of the Gait Deviation Index for the assessment of gastrocnemius fascia lengthening in children with Cerebral Palsy. Res Dev Disabil 32:377–381CrossRefGoogle Scholar
  19. Coghe G, Pau M, Corona F et al (2015) Walking improvements with nabiximols in patients with multiple sclerosis. J Neurol 262:2472–2477CrossRefGoogle Scholar
  20. Cretual A, Bervet K, Ballaz L (2010) Gillette Gait Index in adults. Gait Posture 32:307–310CrossRefGoogle Scholar
  21. Danino B, Khamis S, Hemo Y et al (2013) The efficacy of neuroprosthesis in young hemiplegic patients, measured by three different gait indices: early results. J Child Orthop 7:537–542CrossRefGoogle Scholar
  22. Domagalska M, Szopa A, Syczewska M et al (2013) The relationship between clinical measurements and gait analysis data in children with cerebral palsy. Gait Posture 38:1038–1043CrossRefGoogle Scholar
  23. Dreher T, Vegvari D, Wolf SI et al (2012) Development of knee function after hamstring lengthening as a part of multilevel surgery in children with spastic diplegia: a long-term outcome study. J Bone Joint Surg Am 18:121–130CrossRefGoogle Scholar
  24. Esbjörnsson AC, Rozumalski A, Iversen MD et al (2014) Quantifying gait deviations in individuals with rheumatoid arthritis using the Gait Deviation Index. Scand J Rheumatol 43:124–131CrossRefGoogle Scholar
  25. Eshraghi A, Abu Osman NA, Karimi M et al (2014) Gait biomechanics of individuals with transtibial amputation: effect of suspension system. PLoS One 9:e96988CrossRefGoogle Scholar
  26. Ferreira LA, Cimolin V, Costici PF et al (2014) Effects of gastrocnemius fascia lengthening on gait pattern in children with cerebral palsy using the gait profile score. Res Dev Disabil 35:1137–1143CrossRefGoogle Scholar
  27. Firth GB, Passmore E, Sangeux M et al (2013) Multilevel surgery for equinus gait in children with spastic diplegic cerebral palsy: medium-term follow-up with gait analysis. J Bone Joint Surg Am 95:931–938CrossRefGoogle Scholar
  28. Galli M, Cimolin V, De Pandis MF et al (2012a) Use of the Gait Deviation index for the evaluation of patients with Parkinson’s disease. J Mot Behav 44:161–167CrossRefGoogle Scholar
  29. Galli M, Ferrario D, Patti P et al (2012b) The use of 3d motion analysis in a patient with an atypical juvenile neuronal ceroid lipofuscinoses phenotype with CLN1 mutation and deficient PPT activity. J Dev Phys Disabil 24(2):155–165CrossRefGoogle Scholar
  30. Galli M, Cimolin V, Rigoldi C et al (2015) Use of the gait profile score for the quantification of gait pattern in down syndrome. J Dev Phys Disabil 27:609–615CrossRefGoogle Scholar
  31. Galli M, Cimolin V, Rigoldi C et al (2016) Quantitative evaluation of the effects of ankle foot orthosis on gait in children with cerebral palsy using the gait profile score and gait variable scores. J Dev Phys Disabil 28:367–379CrossRefGoogle Scholar
  32. Garbelotti SA Jr, Lucareli PR, Ramalho A Jr et al (2014) An investigation of the value of tridimensional kinematic analysis in functional diagnosis of lumbar spinal stenosis. Gait Posture 40:150–153CrossRefGoogle Scholar
  33. Kark L, Vickers D, McIntosh A et al (2012) Use of gait summary measures with lower limb amputees. Gait Posture 35:238–243CrossRefGoogle Scholar
  34. Kiernan D, Walsh M, O’Sullivan R et al (2014) The influence of estimated body segment parameters on predicted joint kinetics during diplegic cerebral palsy gait. J Biomech 47:284–288CrossRefGoogle Scholar
  35. Kiernan D, Malone A, O’Brien T et al (2015) The clinical impact of hip joint centre regression equation error on kinematics and kinetics during paediatric gait. Gait Posture 41:175–179CrossRefGoogle Scholar
  36. Kiernan D, Hosking J, O’Brien T (2016) Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error? Gait Posture 45:133–136CrossRefGoogle Scholar
  37. Kohonen T (1988) Self-organisation and associative memory. Springer, BerlinCrossRefMATHGoogle Scholar
  38. Kohonen T (2001) Self-organizing maps. Springer, BerlinCrossRefMATHGoogle Scholar
  39. Lee KM, Chung CY, Kwon DG et al (2011) Reliability of physical examination in the measurement of hip flexion contracture and correlation with gait parameters in cerebral palsy. J Bone Joint Surg Am 93:150–158CrossRefGoogle Scholar
  40. Lee SY, Kwon SS, Chung CY et al (2014) Rectus femoris transfer in cerebral palsy patients with stiff knee gait. Gait Posture 40:76–81CrossRefGoogle Scholar
  41. Massaad A, Assi A, Skalli W et al (2014) Repeatability and validation of gait deviation index in children: typically developing and cerebral palsy. Gait Posture 39:354–358CrossRefGoogle Scholar
  42. McMulkin ML, MacWilliams BA (2008) Intersite variations of the Gillette Gait Index. Gait Posture 28:483–487CrossRefGoogle Scholar
  43. McMulkin ML, Gordon AB, Caskey PM et al (2016) Outcomes of orthopaedic surgery with and without an external femoral derotational osteotomy in children with cerebral palsy. J Pediatr Orthop 36:382–386CrossRefGoogle Scholar
  44. Novacheck TF, Trost J, Schwartz MH (2002) Intramuscular psoas lengthening improves dynamic hip function in children with cerebral palsy. J Pediatr Orthop 22:158–164Google Scholar
  45. Pau M, Coghe G, Atzeni C et al (2014) Novel characterization of gait impairments in people with multiple sclerosis by means of the gait profile score. J Neurol Sci 345:159–163CrossRefGoogle Scholar
  46. Pau M, Coghe G, Corona F et al (2015) Effect of spasticity on kinematics of gait and muscular activation in people with Multiple Sclerosis. J Neurol Sci 358:339–344CrossRefGoogle Scholar
  47. Putz C, Döderlein L, Mertens EM et al (2016) Multilevel surgery in adults with cerebral palsy. Bone Joint J 98-B:282–288CrossRefGoogle Scholar
  48. Rasmussen HM, Nielsen DB, Pedersen NW, Overgaard S, Holsgaard-Larsen A (2015) Gait Deviation Index, Gait Profile Score and Gait Variable Score in children with spastic cerebral palsy: Intra-rater reliability and agreement across two repeated sessions. Gait Posture 42:133–137CrossRefGoogle Scholar
  49. Rosenlund S, Holsgaard-Larsen A, Overgaard S et al (2016) The Gait Deviation Index is associated with hip muscle strength and patient-reported outcome in patients with severe hip osteoarthritis-a cross-sectional study. PLoS One 11:e0153177CrossRefGoogle Scholar
  50. Rozumalski A, Schwartz MH (2011) The GDI-Kinetic: a new index for quantifying kinetic deviations from normal gait. Gait Posture 33:730–732CrossRefGoogle Scholar
  51. Rutz E, Baker R, Tirosh O et al (2011) Tibialis anterior tendon shortening in combination with Achilles tendon lengthening in spastic equinus in cerebral palsy. Gait Posture 33:152–157CrossRefGoogle Scholar
  52. Rutz E, Donath S, Tirosh O et al (2013) Explaining the variability improvements in gait quality as a result of single event multi-level surgery in cerebral palsy. Gait Posture 38:455–460CrossRefGoogle Scholar
  53. Schutte LM, Narayanan U, Stout JL, Selber P, Gage JR, Schwartz MH et al (2000) An index for quantifying deviations from normal gait. Gait Posture 11:25–31CrossRefGoogle Scholar
  54. Schwartz MH, Rozumalski A (2008) The Gait Deviation Index: a new comprehensive index of gait pathology. Gait Posture 28:351–357CrossRefGoogle Scholar
  55. Schwartz MH, Novacheck TF, Trost J (2000) A tool for quantifying hip flexor function during gait. Gait Posture 12:122–127CrossRefGoogle Scholar
  56. Sienko Thomas S, Buckon CE, Nicorici A et al (2010) Classification of the gait patterns of boys with Duchenne muscular dystrophy and their relationship to function. J Child Neurol 25:1103–1109CrossRefGoogle Scholar
  57. Speciali DS, Oliveira EM, Cardoso JR et al (2014a) Gait profile score and movement analysis profile in patients with Parkinson’s disease during concurrent cognitive load. Braz J Phys Ther 18:315–322CrossRefGoogle Scholar
  58. Speciali DS, Corrêa JC, Luna NM et al (2014b) Validation of GDI, GPS and GVS for use in Parkinson’s disease through evaluation of effects of subthalamic deep brain stimulation and levodopa. Gait Posture 39:1142–1145CrossRefGoogle Scholar
  59. Syczewska M, Dembowska-Bagińska B, Perek-Polnik M et al (2010) Gait pathology assessed with Gillette Gait Index in patients after CNS tumour treatment. Gait Posture 32:358–362CrossRefGoogle Scholar
  60. Szopa A, Domagalska-Szopa M, Czamara A (2014) Gait pattern differences in children with unilateral cerebral palsy. Res Dev Disabil 35:2261–2266CrossRefGoogle Scholar
  61. Terjesen T, Lofterød B, Skaaret I (2015) Gait improvement surgery in ambulatory children with diplegic cerebral palsy. Acta Orthop 86:511–517CrossRefGoogle Scholar
  62. Thomason P, Baker R, Dodd K et al (2011) Single-Event multilevel surgery in children with spastic diplegia: a pilot randomized controlled trial. J Bone Joint Surg Am 93:451–460CrossRefGoogle Scholar
  63. Tinney A, Thomason P, Sangeux M et al (2015) The transverse Vulpius gastrocsoleus recession for equinus gait in children with cerebral palsy. Bone Joint J 97-B:564–571CrossRefGoogle Scholar
  64. Trost JP, Schwartz MH, Krach LE et al (2008) Comprehensive short-term outcome assessment of selective dorsal rhizotomy. Dev Med Child Neurol 50:765–771CrossRefGoogle Scholar
  65. Westhoff B, Martiny F, Reith A et al (2012) Computerized gait analysis in Legg-Calvé-Perthes disease – analysis of the sagittal plane. Gait Posture 35:541–546CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanoItaly
  2. 2.IRCCS “San Raffaele Pisana” Tosinvest SanitàRomaItaly

Personalised recommendations