Advertisement

Structural Dynamics of Materials Probed by X-Ray Photon Correlation Spectroscopy

  • Anders Madsen
  • Andrei Fluerasu
  • Beatrice Ruta

Abstract

In this chapter we discuss coherent X-ray scattering, photon statistics of speckle patterns, and X-ray photon correlation spectroscopy (XPCS). XPCS is a coherent X-ray scattering technique used to characterize dynamic properties of condensed matter by recording a fluctuating speckle pattern. In the experiments, the time correlation function of the scattered intensity is calculated at different momentum transfers Q and thereby detailed information about the dynamics is obtained. Recently, XPCS applications have broadened to include the study of nonequilibrium and heterogeneous dynamics, e.g., in systems close to jamming or at the glass transition. This is enabled through multi-speckle techniques where a 2D area detector (CCDs or pixel detectors) is employed, and the correlation function is evaluated by averaging over subsets of equivalent pixels (same Q). In this manner time averaging can be avoided, and the time-dependent dynamics is quantified by the so-called two-times correlation functions. Higher-order correlation functions may also be calculated to investigate questions related to non-Gaussian dynamics and dynamical heterogeneity. We discuss recent forefront applications of XPCS in the study of soft and hard condensed matter dynamics, including phase-separation dynamics of colloid-polymer mixtures, motion of Au nanoparticles at the air-water interface, dynamics of atoms in metallic crystals and glasses, and domain coarsening in phase-ordering binary alloys.

Keywords

Metallic Glass Speckle Pattern Photon Statistic Time Correlation Function Dynamical Heterogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. D.L. Abernathy et al., J. Sync. Rad. 5, 37 (1998)CrossRefGoogle Scholar
  2. E. Allaria et al., Nat. Photonics 6, 699 (2012)ADSCrossRefGoogle Scholar
  3. J. Amann et al., Nat. Photonics 6, 693 (2012)ADSCrossRefGoogle Scholar
  4. C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88 3113 (2000)ADSCrossRefGoogle Scholar
  5. B.J. Berne, R. Pecora, Dynamic Light Scattering (Dover, Mineola, 2000)Google Scholar
  6. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)ADSCrossRefGoogle Scholar
  7. L. Berthier, G. Biroli, J.-P. Boucahaud, L. Cipelletti, W. Van Saarlos, Dynamical Heterogeneities in Glasses, Colloids and Granular Media (Oxford University Press, Oxford, 2011)CrossRefGoogle Scholar
  8. BESAC Report, The New Era of Science: Directing Matter and Energy: Five Challenges for Science and the Imagination, US Department of Energy (2007)Google Scholar
  9. J.P. Bouchaud, E. Pitard, Eur. Phys. J. E 6, 231 (2001)CrossRefGoogle Scholar
  10. G. Brown, P.A. Rikvold, M. Sutton, M. Grant, Phys. Rev. E 56 6601 (1997)ADSCrossRefGoogle Scholar
  11. Z.H. Cai et al., Phys. Rev. Lett. 73, 82 (1994)ADSCrossRefGoogle Scholar
  12. Y. Chushkin, C. Caronna, A. Madsen, J. Appl. Cryst. 45, 807 (2012)CrossRefGoogle Scholar
  13. L. Cipelletti, D.A. Weitz, Rev. Sci. Instr. 70, 3214 (1999)ADSCrossRefGoogle Scholar
  14. L. Cipelletti et al., Faraday Discuss. Chem. Soc. 123, 237 (2003)ADSCrossRefGoogle Scholar
  15. P.G. de Gennes, Physica 25, 825 (1959)ADSCrossRefGoogle Scholar
  16. P. Falus, M.A. Borthwick, S.G.J. Mochrie, Rev. Sci. Instr. 75, 4383 (2004)ADSCrossRefGoogle Scholar
  17. A. Fluerasu, M. Sutton, E. Dufresne, Phys. Rev. Lett. 94, 055501 (2005)ADSCrossRefGoogle Scholar
  18. A. Fluerasu, A. Moussaid, A. Madsen, A. Schofield, Phys. Rev. E 76, 0100401(R) (2007)Google Scholar
  19. G. Geloni et al., New J. Phys. 12, 035021 (2010)ADSCrossRefGoogle Scholar
  20. G. Geloni, V. Kocharyan, E. Saldin, J. Mod. Opt. 58, 1391 (2011)ADSCrossRefGoogle Scholar
  21. J.W. Goodman, in Laser Speckle and Related Phenomena, ed. by J.C. Dainty (Springer, Berlin, 1984), pp. 9–74; J.W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, Greenwood Village, 2007)Google Scholar
  22. G. Grübel, D.L. Abernathy, SPIE 3154, 103 (1997)ADSGoogle Scholar
  23. G. Grübel, G.B. Stephenson, C. Gutt, H. Sinn, T. Tschentscher, Nucl. Instrum. Methods Phys. Res. B 262, 357 (2007)ADSCrossRefGoogle Scholar
  24. G. Grübel, A. Madsen, A. Robert, in Soft-Matter Characterization, ed. by R. Borsali, R Pecora (Springer, New York, 2008), pp. 935–995Google Scholar
  25. J. Horbach, W. Kob, K. Binder, Phys. Rev. Lett. 88, 125502 (2002)ADSCrossRefGoogle Scholar
  26. S.O. Hruszkewycz et al., Phys. Rev. Lett. 109, 185502 (2012)ADSCrossRefGoogle Scholar
  27. D. Langevin (ed.), Light Scattering by Liquid Surfaces and Complementary Techniques (Marcel Dekker, New York, 1992)Google Scholar
  28. S. Lee et al., Opt. Express 20, 9790 (2012)ADSCrossRefGoogle Scholar
  29. P. Lehmann, Appl. Opt. 38, 1144 (1999)ADSCrossRefGoogle Scholar
  30. M. Leitner, Studying Atomic Dynamics with Coherent X-rays (Springer, Heidelberg, 2012)CrossRefGoogle Scholar
  31. M. Leitner, B. Sepiol, L.-M. Stadler, B. Pfau, G. Vogl, Nat. Mater. 8, 717 (2009)ADSCrossRefGoogle Scholar
  32. M. Leitner, B. Sepiol, L.-M. Stadler, B. Pfau, Phys. Rev. B 86, 064202 (2012)ADSCrossRefGoogle Scholar
  33. B. Lengeler, Naturwissenschaften 88, 249 (2001)ADSCrossRefGoogle Scholar
  34. F. Livet, M. Sutton, C. R. Phys. 13, 227 (2012)ADSCrossRefGoogle Scholar
  35. F. Livet et al., Nucl. Instrum. Methods Phys. Res. Sect. A, 451, 596 (2000)Google Scholar
  36. F. Livet et al., Phys. Rev. E 63 36108 (2001)ADSCrossRefGoogle Scholar
  37. R. Loudon, The Quantum Theory of Light, 2nd edn. (Oxford Science, Oxford, 1991)zbMATHGoogle Scholar
  38. V. Lubchenko, P.G. Wolynes, J. Chem. Phys. 121, 2852 (2004)ADSCrossRefGoogle Scholar
  39. K.F. Ludwig, Phys. Rev. Lett. 61, 1526 (1988)ADSCrossRefGoogle Scholar
  40. K. Ludwig et al., Phys. Rev. B 72, 144201 (2005)ADSMathSciNetCrossRefGoogle Scholar
  41. D. Lumma, L.B. Lurio, S. Mochrie, M. Sutton, Rev. Sci. Instr. 71, 3274 (2000)ADSCrossRefGoogle Scholar
  42. A. Madsen, Conceptual Design Report: Scientific Instrument MID, XFEL.EU TR-2011-008 (2011). http://dx.doi.org/10.3204/XFEL.EU/TR-2011-008
  43. A. Madsen, T. Seydel, M. Tolan, G. Grübel, J. Sync. Rad. 12, 786 (2005)CrossRefGoogle Scholar
  44. A. Madsen, R.L. Leheny, H. Guo, M. Sprung, O. Czakkel, New J. Phys 12, 055001 (2010)ADSCrossRefGoogle Scholar
  45. J. Miao, R.L. Sandberg, C. Song, Sel. Top. Quant. Elect., IEEE 18, 399 (2012)Google Scholar
  46. D. Orsi, L. Cristofolini, G. Baldi, A. Madsen, Phys. Rev. Lett. 108, 105701 (2012)ADSCrossRefGoogle Scholar
  47. A. Papagiannopoulos, T.A. Waigh, A. Fluerasu, C. Fernyhough, A. Madsen, J. Phys.: Condens. Matter 17, L279 (2005)ADSGoogle Scholar
  48. K.N. Pham et al., Science 296, 104 (2002)ADSCrossRefGoogle Scholar
  49. C. Ponchut et al., JINST 6, C01069 (2011)ADSCrossRefGoogle Scholar
  50. P.N. Pusey, in Liquids, Freezing and Glass Transition, ed. by J.P. Hansen, D. Levesque, J. Zinn-Justin, Les Houches Session LI (Elsevier, Amsterdam, 1991), p. 763–942Google Scholar
  51. V. Radicci et al., JINST 7, 02019 (2012)CrossRefGoogle Scholar
  52. J.D. Rigden, E.I. Gordon, Proc. IRE 50, 2367 (1962)Google Scholar
  53. I. Robinson, R. Harder, Nat. Mater. 8, 291 (2009)ADSCrossRefGoogle Scholar
  54. I. Robinson et al., Phys. Rev. B 52, 9917 (1995)ADSCrossRefGoogle Scholar
  55. B. Ruta et al., Phys. Rev. Lett. 109, 165701 (2012)ADSCrossRefGoogle Scholar
  56. B. Ruta et al., AIP Conf. Proc. 1518, 181 (2013a)Google Scholar
  57. B. Ruta, G. Baldi, G. Monaco, Y. Chushkin, J. Chem. Phys. 138, 054508 (2013b)Google Scholar
  58. B. Ruta, V.M. Giordano, L. Erra, C. Liu, E. Pineda, J. Alloy. Compd. 615, S45 (2014a)Google Scholar
  59. B. Ruta et al., Nat. Commun. 5, 3939 (2014b)Google Scholar
  60. P.N. Segre, P.N. Pusey, Physica A 235, 9 (1997)ADSCrossRefGoogle Scholar
  61. T. Seydel et al., Rev. Sci. Instr. 74, 4033 (2003)ADSCrossRefGoogle Scholar
  62. R.F. Shannon Jr., S.E. Nagler, C.R. Harkless, R.M. Nicklow, Phys. Rev. B 46, 40 (1992)ADSCrossRefGoogle Scholar
  63. A.J.F. Siegert, Massachusetts Institute of Technology Radiation Labatory Report No. 465 (1943)Google Scholar
  64. S.K. Sinha, D.K. Ross, Physica B 149, 51 (1988)CrossRefGoogle Scholar
  65. I. Sikharulidze et al., Phys. Rev. Lett 88, 115503 (2002)ADSCrossRefGoogle Scholar
  66. M. Stana, M. Leitner, M. Ross, B. Sepiol, J. Phys.: Condens. Matter 25, 065401 (2013)ADSGoogle Scholar
  67. M. Sutton, C.R. Phys. 9, 657 (2008)Google Scholar
  68. M. Sutton et al., Nature 352, 608 (1991)ADSCrossRefGoogle Scholar
  69. G. Vogl, B. Sepiol, in Diffusion in Condensed Matter, ed. by P. Heitjans, J. Kärger (Springer, New York, 2005), pp. 65–91Google Scholar
  70. A.R. Yavari et al., Acta Mater. 53, 1611 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.European X-Ray Free-Electron Laser FacilityHamburgGermany
  2. 2.Brookhaven National LaboratoryPhoton Sciences DirectorateUptonUSA
  3. 3.European Synchrotron Radiation FacilityGrenobleFrance

Personalised recommendations