Skip to main content

Steady-State Navier-Stokes Flow Around a Moving Body

  • Reference work entry
  • First Online:
Book cover Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Abstract

In this chapter we present an updated account of the fundamental mathematical results pertaining the steady-state flow of a Navier-Stokes liquid past a rigid body which is allowed to rotate. Precisely, we shall address questions of existence, uniqueness, regularity, asymptotic structure, generic properties, and (steady and unsteady) bifurcation. Moreover, we will perform a rather complete analysis of the longtime behavior of dynamical perturbation to the above flow, thus inferring, in particular, sufficient conditions for their stability and asymptotic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Amann, On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech. 2, 16–98 (2000)

    Article  MathSciNet  Google Scholar 

  2. K.I. Babenko, On stationary solutions of the problem of flow past a body of a viscous incompressible fluid. Mat. Sb. 91, 3–27 (1973); English transl.: Math. SSSR Sbornik 20, 1–25 (1973)

    Google Scholar 

  3. K.I. Babenko, M.M. Vasil’ev, On the asymptotic behavior of a steady flow of viscous fluid at some distance from an immersed body. Prikl. Mat. Meh. 37, 690–705 (1973); English transl.: J. Appl. Math. Mech. 37, 651–665 (1973)

    Article  MathSciNet  Google Scholar 

  4. K.I. Babenko, Spectrum of the linearized problem of flow of a viscous incompressible liquid round a body. Sov. Phys. Dokl. 27, 25–27 (1982)

    MATH  Google Scholar 

  5. J. Bemelmans, G.P. Galdi, M. Kyed, On the steady motion of a coupled system solid-liquid. Mem. Am. Math. Soc. 226(1060), vi+89 pp. (2013)

    Article  MathSciNet  Google Scholar 

  6. M.S. Berger, Nonlinearity and Functional Analysis, Lectures on Nonlinear Problems in Mathematical Analysis (Academic Press, New York, 1977)

    MATH  Google Scholar 

  7. W. Borchers, Zur Stabilität und Faktorisierungsmethode für die Navier-Stokes Gleichungen inkompressibler viskoser Flüssigkeiten. Habilitationsschrift, Universität Paderborn (1992)

    Google Scholar 

  8. W. Borchers, T. Miyakawa, L2-decay for Navier-Stokes flows in unbounded domains with application to exterior stationary flows. Arch. Ration. Mech. Anal. 118, 273–295 (1992)

    Article  Google Scholar 

  9. W. Borchers, T. Miyakawa, On stability of exterior stationary Navier–Stokes flows. Acta Math. 174, 311–382 (1995)

    Article  MathSciNet  Google Scholar 

  10. D. Clark, The vorticity at infinity for solutions of the stationary Navier-Stokes equations in exterior domains. Indiana Univ. Math. J. 20, 633–654 (1971)

    Article  MathSciNet  Google Scholar 

  11. P. Cumsille, M. Tucsnak, Wellpossedness for the Navier–Stokes flow in the exterior of a rotating obstacle. Math. Methods Appl. Sci. 29, 595–623 (2006)

    MathSciNet  MATH  Google Scholar 

  12. S.C.R. Dennis, D.B. Ingham, S.N. Singh, The steady flow of a viscous fluid due to a rotating sphere. Q. J. Mech. Appl. Math. 34, 361–381 (1981)

    Article  Google Scholar 

  13. P. Deuring, Exterior stationary Navier-Stokes flows in 3D with nonzero velocity at infinity: asymptotic behavior of the second derivatives of the velocity. Commun. Partial Differ. Equ. 30, 987–1020 (2005)

    Article  MathSciNet  Google Scholar 

  14. P. Deuring, G.P. Galdi, Exponential decay of the vorticity in the steady-state flow of a viscous liquid past a rotating body. Arch. Ration. Mech. Anal. 221, 183–213 (2016)

    Article  MathSciNet  Google Scholar 

  15. P. Deuring, J. Neustupa, An eigenvalue criterion for stability of a steady Navier–Stokes flow in \(\mathbb{R}^{3}\). J. Math. Fluid Mech. 12, 202–242 (2010)

    Article  MathSciNet  Google Scholar 

  16. R. Farwig, H. Sohr, Weighted Estimates for the Oseen Equations and the Navier-Stokes Equations in Exterior Domains. Advances in Mathematics for Applied Sciences, vol. 47 (World Scientific Publishing, River Edge, 1998), pp. 15–30

    MATH  Google Scholar 

  17. R. Farwig, An Lp-analysis of viscous fluid flow past a rotating obstacle. Tohoku Math. J. 58, 129–147 (2005)

    Article  Google Scholar 

  18. R. Farwig, J. Neustupa, On the spectrum of a Stokes-type operator arising from flow around a rotating body. Manuscr. Math. 122, 419–437 (2007)

    Article  MathSciNet  Google Scholar 

  19. R. Farwig, J. Neustupa, On the spectrum of an Oseen-type operator arising from flow past a rotating body. Integral Equ. Oper. Theory 62, 169–189 (2008)

    Article  MathSciNet  Google Scholar 

  20. R. Farwig, J. Neustupa, On the spectrum of an Oseen-type operator arising from fluid flow past a rotating body in L σ q(Ω). Tohoku Math. J. 62(2), 287–309 (2010)

    Article  MathSciNet  Google Scholar 

  21. R. Farwig, T. Hishida, Asymptotic profile of steady Stokes flow around a rotating obstacle. Manuscr. Math. 136, 315–338 (2011)

    Article  MathSciNet  Google Scholar 

  22. R. Farwig, Š. Nečasová, J. Neustupa, Spectral analysis of a Stokes–type operator arising from flow around a rotating body. J. Math. Soc. Jpn. 63(1), 163–194 (2011)

    MathSciNet  MATH  Google Scholar 

  23. R. Farwig, H. Kozono, T. Yanagisawa, Leray’s inequality in general multi-connected domains in \(\mathbb{R}^{n}\). Math. Ann. 354, 137–145 (2012)

    MathSciNet  MATH  Google Scholar 

  24. R. Finn, On steady-state solutions of the Navier-Stokes partial differential equations. Arch. Ration. Mech. Anal. 3, 381–396 (1959)

    Article  MathSciNet  Google Scholar 

  25. R. Finn, Estimates at infinity for stationary solutions of the Navier-Stokes equations. Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine 3, 387–418 (1959)

    MathSciNet  MATH  Google Scholar 

  26. R. Finn, On the steady-state solutions of the Navier-Stokes equations. III. Acta Math. 105, 197–244 (1961)

    Article  Google Scholar 

  27. R. Finn, On the exterior stationary problem for the Navier-Stokes equations and associated perturbation problems. Arch. Ration. Mech. Anal. 19, 363–406 (1965)

    MathSciNet  MATH  Google Scholar 

  28. R. Finn, Stationary solutions of the Navier-Stokes equations, in Proceedings of a Symposium in Applied Mathematics, vol. 17 (American Mathematical Society, Providence, 1965), pp. 121–153

    Google Scholar 

  29. H. Fujita, On the existence and regularity of the steady-state solutions of the Navier-Stokes equation. J. Fac. Sci. Univ. Tokyo. 9, 59–102 (1961)

    MATH  Google Scholar 

  30. H. Fujita, T. Kato, On the Navier-Stokes initial value problem. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  Google Scholar 

  31. G.P. Galdi, S. Rionero, Local estimates and stability of viscous flows in an exterior domain. Arch. Ration. Mech. Anal. 81, 333–347 (1983)

    MathSciNet  MATH  Google Scholar 

  32. G.P. Galdi, S. Rionero, Weighted Energy Methods in Fluid Dynamics and Elasticity. Lecture Notes in Mathematics, vol. 1134 (Springer, Berlin, 1985)

    Book  Google Scholar 

  33. G.P. Galdi, P. Maremonti, Monotonic decreasing and asymptotic behavior of the kinetic energy for weak solutions of the Navier-Stokes equations in exterior domains. Arch. Ration. Mech. Anal. 94, 253–266 (1986)

    Article  MathSciNet  Google Scholar 

  34. G.P. Galdi, M. Padula, A new approach to energy theory in the stability of fluid motion. Arch. Ration. Mech. Anal. 110, 187–286 (1990)

    Article  MathSciNet  Google Scholar 

  35. G.P. Galdi, On the asymptotic structure of D–solutions to steady Navier-Stokes equations in exterior domains, in Mathematical Problems Relating to the Navier-Stokes Equation. Advances in Mathematics for Applied Sciences, vol. 11 (World Scientific Publishing, River Edge, 1992), pp. 81–104

    Google Scholar 

  36. G.P. Galdi, P.J. Rabier, Functional properties of the Navier-Stokes operator and bifurcation of stationary solutions: planar exterior domains, in Topics in Nonlinear Analysis. Progress in Nonlinear Differential Equations and Their Applications, vol. 35 (Birkhäuser, Basel, 1999), pp. 273–303

    Chapter  Google Scholar 

  37. G.P. Galdi, An Introduction to the Navier–Stokes initial–boundary value problem, in Fundamental Directions in Mathematical Fluid Mechanics, ed. by G. P. Galdi, J. Heywood, R. Rannacher. Advances in Mathematical Fluid Mechanics (Birkhauser–Verlag, Basel, 2000), pp. 1–98

    Chapter  Google Scholar 

  38. G.P. Galdi, On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, in Handbook of Mathematical Fluid Mechanics, vol. 1 (Elsevier Science, Amsterdam/Boston, 2002), pp. 653–791

    MATH  Google Scholar 

  39. G.P. Galdi, Steady flow of a Navier-Stokes exterior fluid around a rotating obstacle. J. Elast. 71, 1–31 (2003)

    Article  Google Scholar 

  40. G.P. Galdi, A.L. Silvestre, Strong solutions to the Navier-Stokes equations around a rotating obstacle. Arch. Ration. Mech. Anal. 176, 331–350 (2005)

    Article  MathSciNet  Google Scholar 

  41. G.P. Galdi, Further properties of steady-state solutions to the Navier-Stokes problem past a three-dimensional obstacle. J. Math. Phys. 48, 43 (2007)

    MathSciNet  MATH  Google Scholar 

  42. G.P. Galdi, A.L. Silvestre, The steady motion of a Navier-Stokes liquid around a rigid body. Arch. Ration. Mech. Anal. 184, 371–400 (2007)

    Article  MathSciNet  Google Scholar 

  43. G.P. Galdi, A.L. Silvestre, Further results on steady-state flow of a Navier-Stokes liquid around a rigid body. Existence of the wake. Publ. RIMS, Kokyuroku Bessatsu Kyoto University, 2007, pp. 127–143

    MATH  Google Scholar 

  44. G.P. Galdi, M. Kyed, Steady flow of a Navier-Stokes liquid past an elastic body. Arch. Ration. Mech. Anal. 194, 849–875 (2009)

    Article  MathSciNet  Google Scholar 

  45. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, in Steady-State Problems, 2nd edn. (Springer, New York, 2011)

    MATH  Google Scholar 

  46. G.P. Galdi, M. Kyed, Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable. Arch. Ration. Mech. Anal. 200, 21–58 (2011)

    Article  MathSciNet  Google Scholar 

  47. G.P. Galdi, Steady-state Navier-Stokes problem past a rotating body: geometric-functional properties and related questions, in H. Beirão da Veiga, F. Flandoli (eds.) Topics in Mathematical Fluid Mechanics. Lecture Notes in Mathematics, vol. 2073 (Springer, Heidelberg, 2013), pp. 109–197

    Chapter  Google Scholar 

  48. G.P. Galdi, On the Leray-Hopf extension condition for the steady-state Navier-Stokes problem in multiply-connected bounded domains. Ann. Univ. Ferrara 60, 123–132 (2014)

    Article  MathSciNet  Google Scholar 

  49. G.P. Galdi, On bifurcating time-periodic flow of a Navier–Stokes liquid past a cylinder. Arch. Ration. Mech. Anal. 222 (2016), no. 1, 285–315

    Article  MathSciNet  Google Scholar 

  50. G.P. Galdi, A time-periodic bifurcation theorem and its application to Navier-Stokes flow past an obstacle. arXiv:1507.07903 (2015)

    Google Scholar 

  51. G.P. Galdi, M. Kyed, Time periodic solutions to the Navier–Stokes equations, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (in press)

    Google Scholar 

  52. G.P. Galdi, J. Neustupa, Stability of a steady flow past a rotating body. To appear in Mathematical Fluid Dynamics, Present and Future, eds. Y.Shibata and Y.Suzuki, Springer Proceedings in Mathematics and Statistics 183 (Springer Japan 2016)

    Google Scholar 

  53. M. Geissert, H. Heck, M. Hieber, Lp-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle. J. Reine Angew. Math. 596, 45–62 (2006)

    MathSciNet  MATH  Google Scholar 

  54. Y. Giga, Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes equations. J. Differ. Equ. 61, 186–212 (1986)

    Article  Google Scholar 

  55. Y. Giga, H. Sohr, On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo, Sec. IA 36, 103–130 (1989)

    Google Scholar 

  56. J. Guillod, Steady solutions of the Navier-Stokes equations in the plane. University of Minnesota (2015, preprint)

    Google Scholar 

  57. H. Heck, H. Kim, H. Kozono, Weak solutions of the stationary Navier-Stokes equations for a viscous incompressible fluid past an obstacle. Math. Ann. 356, 653–681 (2013)

    MathSciNet  MATH  Google Scholar 

  58. J.G. Heywood, On stationary solutions of the Navier-Stokes equations as limits of nonstationary solutions. Arch. Ration. Mech. Anal. 37, 48–60 (1970)

    MathSciNet  MATH  Google Scholar 

  59. J.G. Heywood, The exterior nonstationary problem for the Navier-Stokes equations. Acta Math. 129, 11–34 (1972)

    Article  MathSciNet  Google Scholar 

  60. J.G. Heywood, The Navier-Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29, 639–681 (1980)

    Article  MathSciNet  Google Scholar 

  61. J.G. Heywood, On the impossibility, in some cases, of the Leray–Hopf condition for energy estimates. J. Math. Fluid Mech. 13, 449–457 (2001)

    Article  MathSciNet  Google Scholar 

  62. T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 150, 307–348 (1999)

    Article  MathSciNet  Google Scholar 

  63. T. Hishida, Y. Shibata, L p L q estimate of the Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 193, 339-421 (2009)

    Article  MathSciNet  Google Scholar 

  64. E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    Article  MathSciNet  Google Scholar 

  65. G. Iooss, Existence et stabilité de la solution périodiques secondaire intervenant dans les problémes d’evolution du type Navier-Stokes. Arch. Ration. Mech. Anal. 47, 301–329 (1972)

    Article  Google Scholar 

  66. V.I. Iudovich, The onset of auto-oscillations in a fluid. J. Appl. Math. Mech. 35, 587–603 (1971)

    Article  MathSciNet  Google Scholar 

  67. T.A. Johnson, V.C. Patel, Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 19–70 (1999)

    Article  Google Scholar 

  68. D.D. Joseph, D.H. Sattinger, Bifurcating time periodic solutions and their stability. Arch. Ration. Mech. Anal. 45, 79–109 (1972)

    MathSciNet  MATH  Google Scholar 

  69. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin/Heidelberg/New York, 1966)

    MATH  Google Scholar 

  70. T. Kobayashi, Y. Shibata, On the Oseen equation in the three dimensional exterior domain. Math. Ann. 310, 1–45 (1998)

    MathSciNet  MATH  Google Scholar 

  71. G. Kirchhoff, Über die Bewegung eines Rotationskörpers in einer Flüssigkeit. Crelle 71, 237–281 (1869)

    MathSciNet  MATH  Google Scholar 

  72. M. Korobkov, K. Pileckas, R. Russo, The existence theorem for the steady Navier-Stokes problem in exterior axially symmetric 3D domains. arXiv:1403.6921 (2015)

    Google Scholar 

  73. H. Kozono, T. Ogawa, On stability of Navier–Stokes flows in exterior domains. Arch. Ration. Mech. Anal. 128, 1–31 (1994)

    Article  MathSciNet  Google Scholar 

  74. H. Kozono, M. Yamazaki, On a larger class of stable solutions to the Navier–Stokes equations in exterior domains. Math. Z. 228, 751–785 (1998)

    Article  MathSciNet  Google Scholar 

  75. H. Kozono, Asymptotic stability of large solutions with large perturbation to the Navier-Stokes equations. J. Funct. Anal. 176, 153–197 (2000)

    Article  MathSciNet  Google Scholar 

  76. Kračmar, S., Nečasová, Š., P. Penel, Lq-Approach of weak solutions to stationary rotating oseen equations in exterior domains. Q. Appl. Math. 68, 421–437 (2010)

    Google Scholar 

  77. M. Kyed, Time-periodic solutions to the Navier-Stokes equations (Habilitationsschrift, TU Darmstadt, 2012)

    MATH  Google Scholar 

  78. M. Kyed, On the asymptotic structure of a Navier-Stokes flow past a rotating body. J. Math. Soc. Jpn. 66, 1–16 (2014)

    Article  MathSciNet  Google Scholar 

  79. O.A. Ladyzhenskaya, Investigation of the Navier-Stokes equation for a stationary flow of an incompressible fluid. Uspehi Mat. Nauk. 14, 75–97 (1959, in Russian)

    Google Scholar 

  80. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Gordon and Breach/Science Publishers, New York, 1969)

    MATH  Google Scholar 

  81. J. Leray, Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’ hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MATH  Google Scholar 

  82. J. Leray, Sur le mouvements d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  83. J. Leray, J. Schauder, Topologie et équations fonctionnelles. Ann. Sci. École Norm. Sup. 51, 45–78 (1934)

    Article  MathSciNet  Google Scholar 

  84. J. Leray, Les problémes non linéaires. Enseignement Math. 35, 139–151 (1936)

    MATH  Google Scholar 

  85. S.N. Majhi, M. Vasudeviah, Secondary flows due to slow viscous rotating of rough or nearly spherical solids. Acta Mech. 39, 93–103 (1981)

    Article  Google Scholar 

  86. P. Maremonti, Asymptotic stability theorems for viscous fluid motions in exterior domains. Rend. Sem. Mat. Univ. Padova 71, 35–72 (1984)

    MathSciNet  MATH  Google Scholar 

  87. P. Maremonti, Stabilità asintotica in media per moti fluidi viscosi in domini esterni. Ann. Mat. Pura Appl. 142(4), 57–75 (1985)

    Article  MathSciNet  Google Scholar 

  88. K. Masuda, On the stability of incompressible viscous fluid motions past objects. J. Math. Soc. Jpn. 27, 294–327 (1975)

    MathSciNet  MATH  Google Scholar 

  89. T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain. Hiroshima Math. J. 12, 115–140 (1982)

    MathSciNet  MATH  Google Scholar 

  90. T. Miyakawa, H. Sohr, On energy inequality, smoothness and large time behavior in L2 for weak solutions to the Navier-Stokes equations in exterior domains. Math. Z. 199, 455–478 (1988)

    Article  MathSciNet  Google Scholar 

  91. J. Neustupa, Stabilizing influence of a skew–symmetric operator in semilinear parabolic equations. Rend. Mat. Sem. Univ. Padova 102, 1–18 (1999)

    MathSciNet  MATH  Google Scholar 

  92. J. Neustupa, Stability of a steady solution of a semilinear parabolic system in an exterior domain. Far East J. Appl. Math. 15, 307–324 (2004)

    MathSciNet  MATH  Google Scholar 

  93. J. Neustupa, Stability of a steady viscous incompressible flow past an obstacle. J. Math. Fluid Mech. 11, 22–45 (2009)

    Article  MathSciNet  Google Scholar 

  94. J. Neustupa, Existence of a weak solution to the Navier-Stokes equation in a general time-varying domain by the Rothe method. Math. Methods Appl. Sci. 32, 653–683 (2009)

    MathSciNet  MATH  Google Scholar 

  95. J. Neustupa, A spectral criterion for stability of a steady viscous incompressible flow past an obstacle. J. Math. Fluid. Mech. 18, 133–156 (2016)

    MathSciNet  MATH  Google Scholar 

  96. G. Prodi, Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie. Rend. Sem. Mat. Univ. Padova 32, 374–397 (1962)

    MathSciNet  MATH  Google Scholar 

  97. D.H. Sattinger, The mathematical problem of hydrodynamic stability. J. Math. Mech. 18, 797–817 (1970)

    MathSciNet  MATH  Google Scholar 

  98. L.I. Sazonov, Justification of the linearization method in the flow problem. Izv. Ross. Akad. Nauk Ser. Mat. 58, 85–109 (1994, in Russian)

    Google Scholar 

  99. L.I. Sazonov, The onset of auto-oscillations in a flow. Siberian Math. J. 35, 1202–1209 (1994)

    Article  MathSciNet  Google Scholar 

  100. Y. Shibata, On an exterior initial boundary value problem for Navier-Stokes equations. Q. Appl. Math. LVII(1), 117–155 (1999)

    Article  MathSciNet  Google Scholar 

  101. Y. Shibata, A stability theorem of the Navier-Stokes flow past a rotating body, in Proceedings of the Conference on Parabolic and Navier-Stokes Equations. Banach Center Publications, vol. 81 (Institute of Mathematics, Polish Academy of Sciences, Warsaw, 2008), pp. 441–455

    Google Scholar 

  102. Y. Shibata, On the Oseen semigroup with rotating effect, in Functional Analysis and Evolution Equations. The Günter Lumer Volume (Birkhäuser Verlar, Basel, 2009), pp. 595–611

    Chapter  Google Scholar 

  103. S. Smale, An infinite dimensional version of Sards theorem. Am. J. Math. 87, 861–866 (1965)

    MathSciNet  MATH  Google Scholar 

  104. H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts (Birkhäuser Verlag, Basel/Boston/Berlin, 2001)

    MATH  Google Scholar 

  105. G. Stokes, On the effect of internal friction of fluids on the motion of pendulums. Trans. Camb. Philos. Soc. 9, 8–85 (1851)

    Google Scholar 

  106. W. Thomson, P.G. Tait, Treatise on Natural Philosophy, vols. 1, 2 (Cambridge University Press, Cambridge, 1879)

    Google Scholar 

  107. E. Zeidler, Nonlinear Functional Analysis and Applications I. Fixed-Point Theorems (Springer, New York, 1986)

    Book  Google Scholar 

  108. E. Zeidler, Nonlinear Functional Analysis and Applications IV. Application to Mathematical Physics (Springer, New York, 1988)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the partial support of NSF grant DMS-1614011 (G.P.Galdi) and the Grant Agency of the Czech Republic, grant No. 13-00522S, and Academy of Sciences of the Czech Republic, RVO 67985840 (J.Neustupa). This work was also partially supported by the Department of Mechanical Engineering and Materials Sciences of the University of Pittsburgh that hosted the visit of J. Neustupa in Spring 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni P. Galdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Galdi, G.P., Neustupa, J. (2018). Steady-State Navier-Stokes Flow Around a Moving Body. In: Giga, Y., Novotný, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-13344-7_7

Download citation

Publish with us

Policies and ethics