Skip to main content

Finite Time Blow-Up of Regular Solutions for Compressible Flows

  • Reference work entry
  • First Online:
Book cover Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
  • 4042 Accesses

Abstract

The development of finite time singularity of smooth solutions to the compressible Navier-Stokes system as well as its blowup mechanism is discussed in the presence of vacuum. It is shown that any smooth solutions to the compressible Navier-Stokes equations for polytropic fluids in the absence of heat conduction will blow up in finite time as long as the initial densities have compact support or isolated mass group. Besides, unified Serrin-type regularity criteria are established for the barotropic and full compressible Navier-Stokes equations with or without heat conduction. As an immediate corollary, it gives an affirmative answer to a problem proposed by J. Nash in the 1950s which asserts that the finite time blowup must be due to the concentration of either the density or the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  Google Scholar 

  2. L.C. Berselli, G.P. Galdi, Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations. Proc. Am. Math. Soc. 130, 3585–3595 (2002)

    Article  MathSciNet  Google Scholar 

  3. J.Y. Chemin, Dynamic des gaz a masse totale finie. Asymptot. Anal. 3, 215–220 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Y. Cho, B. Jin, Blow-up of viscous heat-conducting compressible flows. J. Math. Anal. Appl. 320, 819–826 (2006)

    Article  MathSciNet  Google Scholar 

  5. Y. Cho, H.J. Choe, H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluid. J. Math. Pures Appl. 83, 243–275 (2004)

    Article  MathSciNet  Google Scholar 

  6. Y. Cho, H. Kim, On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities. Manuscr. Math. 120, 91–129 (2006)

    Article  MathSciNet  Google Scholar 

  7. Y. Cho, H. Kim, Existence results for viscous polytropic fluids with vacuum. J. Differ. Equ. 228, 377–411 (2006)

    Article  MathSciNet  Google Scholar 

  8. H.J. Choe, J. Bum, Regularity of weak solutions of the compressible Navier-Stokes equations. J. Korean Math. Soc. 40, 1031–1050 (2003)

    Article  MathSciNet  Google Scholar 

  9. H.J. Choe, H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J. Differ. Eqs. 190, 504–523 (2003)

    Article  MathSciNet  Google Scholar 

  10. D.P. Du, J.Y. Li, K.J. Zhang, Blowup of smooth solutions to the Navier-Stokes equations for compressible isothermal fluids (2011). arXiv:1108.1613v1

    Google Scholar 

  11. E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford University Press, Oxford/New York, 2004)

    MATH  Google Scholar 

  12. E. Feireisl, E.A. Novotny, H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MathSciNet  Google Scholar 

  13. D. Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data. Trans. Am. Math. Soc. 303, 169–181 (1987)

    MATH  Google Scholar 

  14. D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data. J. Differ. Equ. 120(1), 215–254 (1995)

    Article  MathSciNet  Google Scholar 

  15. D. Hoff, Discontinuous solutions of the Navier-Stokes equations for multi-dimensional heat-conducting fluids. Arch. Rat. Mech. Anal. 193, 303–354 (1997)

    Article  Google Scholar 

  16. D. Hoff, D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J. Appl. Math. 51, 887–898 (1991)

    Article  MathSciNet  Google Scholar 

  17. D. Hoff, J.A. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations. Commun. Math. Phys. 216(2), 255–276 (2001)

    Article  MathSciNet  Google Scholar 

  18. D. Hoff, K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J. 44(2), 603–676 (1995)

    Article  MathSciNet  Google Scholar 

  19. X.D. Huang, Some results on blowup of solutions to the compressible Navier-Stokes equations. Ph.D. thesis, The Chinese University of Hong Kong, 2009

    Google Scholar 

  20. X.D. Huang, J. Li, On breakdown of solutions to the full compressible Navier-Stokes equations. Methods Appl. Anal. 16(4), 479–490 (2009)

    MathSciNet  MATH  Google Scholar 

  21. X.D. Huang, J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations (2011). arXiv:1107.4655v3

    Google Scholar 

  22. X.D. Huang, J. Li, On breakdown of solutions to the full compressible Navier-Stokes equations. Methods Appl. Anal. 16, 479–490 (2009)

    MathSciNet  MATH  Google Scholar 

  23. X.D. Huang, J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows. Commun. Math. Phys. 324, 147–171 (2013)

    Article  MathSciNet  Google Scholar 

  24. X.D. Huang, J. Li, Z.P. Xin, Blowup criterion for viscous barotropic flows with vacuum states. Commun. Math. Phys. 301, 23–35 (2011)

    Article  Google Scholar 

  25. X.D. Huang, J. Li, Z.P. Xin, Serrin type criterion for the three-dimensional viscous compressible flows. SIAM J. Math. Anal. 43, 1872–1886 (2011)

    Article  MathSciNet  Google Scholar 

  26. X.D. Huang, J. Li, Z.P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Commun. Pure Appl. Math. 65, 549–585 (2012)

    Article  MathSciNet  Google Scholar 

  27. X.D. Huang, Z.P. Xin, A blow-up criterion for classical solutions to the compressible Navier-Stkoes equations. Sci. China 53(3), 671–686 (2010)

    Article  MathSciNet  Google Scholar 

  28. X.D. Huang, Z.P. Xin, On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity. Discret. Contin. Dyn. Syst. 36(8), 4477–4493 (2016).

    Article  MathSciNet  Google Scholar 

  29. J.S. Fan, S. Jiang, Blow-Up criteria for the Navier-Stokes equations of compressible fluids. J. Hyper. Diff. Equ. 5, 167–185 (2008)

    Article  MathSciNet  Google Scholar 

  30. J.S. Fan, S. Jiang, Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows. Annales de l’Institut Henri Poincare (C) Analyse non lineaire 27, 337–350 (2010)

    Article  MathSciNet  Google Scholar 

  31. S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Doctoral dissertation, Kyoto University, 1983

    Google Scholar 

  32. S. Kawashima, T. Nishida, The initial-value problems for the equations of viscous compressible and perfect compressible fluids, RIMS, Kokyuroku, 428, Kyoto University, Nonlinear functional analysis, 34–59 June 1981

    Google Scholar 

  33. A.V. Kazhikhov, V.V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. Prikl. Mat. Meh 41, 282–291 (1977)

    MathSciNet  Google Scholar 

  34. J.I. Kanel, A model system of equations for the one-dimensional motion of a gas. Differ. Uravn. 4, 721–734 (1968) (in Russian)

    MathSciNet  Google Scholar 

  35. H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations. Siam J. Math. Anal. 37, 1417–1434 (2006)

    Article  MathSciNet  Google Scholar 

  36. O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type (American Mathematical Society, Providence, 1968)

    Book  Google Scholar 

  37. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959)

    MATH  Google Scholar 

  38. P.D. Lax, The formation and decay of shock waves. Am. Math. Mon. 79, 227–241 (1972)

    Article  MathSciNet  Google Scholar 

  39. P.L. Lions, Mathematical topics in fluid mechanics, vol. 2 (The Clarendon Press, Oxford; Oxford University Press, New York, 1998)

    Google Scholar 

  40. T.P. Liu, Development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations. J. Differ. Equ. 33, 92–111 (1979)

    Article  MathSciNet  Google Scholar 

  41. Z. Luo, Global existence of classical solutions to two-dimensional Navier-Stokes equations with Cauchy data containing vacuum. Math. Methods Appl. Sci. 37(9), 1333–1352 (2014)

    MathSciNet  MATH  Google Scholar 

  42. T. Makino, S. Ukai, S. Kawashima, Sur solutions a support compact de l’equation d’ Euler compressible. Jpn. J. Appl. Math. 3, 249–257 (1986)

    Article  Google Scholar 

  43. A. Matsumura, T. Nishida, Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  MathSciNet  Google Scholar 

  44. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    Article  MathSciNet  Google Scholar 

  45. J. Nash, Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. France. 90, 487–497 (1962)

    Article  MathSciNet  Google Scholar 

  46. J. Nash, Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)

    Article  MathSciNet  Google Scholar 

  47. L. Nirenberg, On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13(3), 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  48. O. Rozanova, Blow up of smooth solutions to the compressible Navier-Stokes equations with the data highly decreasing at infinity. J. Differ. Eqs. 245, 1762–1774 (2008)

    Article  MathSciNet  Google Scholar 

  49. R. Salvi, I. Straskraba, Global existence for viscous compressible fluids and their behavior as t. J. Fac. Sci. Univ. Tokyo Sect. IA. Math. 40, 17–51 (1993)

    Google Scholar 

  50. D. Serre, Variations de grande amplitude pour la densite d’un fluide visqueux compressible. Phys. D. 48(1), 113–128 (1991)

    Article  MathSciNet  Google Scholar 

  51. D. Serre, Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible. C. R. Acad. Sci. Paris Sér, C. R. Acad. Sci. Paris Sér. I Math. 303, 639–642 (1986)

    Google Scholar 

  52. D. Serre, Sur l’équation monodimensionnelle d’un fluide visqueux, compressible et conducteur de chaleur. C. R. Acad. Sci. Paris Sér. I Math. 303, 703–706 (1986)

    MathSciNet  MATH  Google Scholar 

  53. J. Serrin, Mathematical principles of classical fluid-mechanics. Handbuch der Physik, vol. 811 (Springer, Berlin/Heidelberg, 1959), pp 125–265

    Google Scholar 

  54. J. Serrin, On the uniqueness of compressible fluid motion. Arch. Ration. Mech. Anal. 3, 271–288 (1959)

    Article  MathSciNet  Google Scholar 

  55. J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187–95 (1962)

    Article  MathSciNet  Google Scholar 

  56. T. Sideris, Formation of singularities in three-dimensional compressible fluids. Commun. Math. Phys. 101, 475–487 (1985)

    Article  MathSciNet  Google Scholar 

  57. J.A. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edn. (Springer, New York, 1994)

    Book  Google Scholar 

  58. V.A. Vaigant, A.V. Kazhikhov, On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid. Sib. Math. J. 36(6), 1283–1316 (1995)

    Article  MathSciNet  Google Scholar 

  59. Y.Z. Sun, C. Wang, Z.F. Zhang, A Beale-Kato-Majda Blow-up criterion for the 3-D compressible Navier-Stokes equations. J. Math. Pures Appl. 95, 36–47 (2011)

    Article  MathSciNet  Google Scholar 

  60. Y.Z. Sun, C. Wang, Z.F. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows. Arch. Ration. Mech. Anal. 201, 727–742 (2011)

    Article  MathSciNet  Google Scholar 

  61. Z.P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Commun. Pure Appl. Math. 51, 229–240 (1998)

    Article  MathSciNet  Google Scholar 

  62. Z.P. Xin, W. Yan, On Blowup of classical solutions to the compressible Navier-Stokes equations. Commun. Math. Phys. 321, 529–541 (1995)

    Article  MathSciNet  Google Scholar 

  63. Y. Zhou, Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain. Math. Ann. 328, 173–192 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdi Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Huang, X., Xin, Z. (2018). Finite Time Blow-Up of Regular Solutions for Compressible Flows. In: Giga, Y., Novotný, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-13344-7_57

Download citation

Publish with us

Policies and ethics