Sol-Gel-Derived Nanoscale Materials

  • Mason J. Burger
  • Benjamin J. Robinson
  • Leonard F. PeaseIII
Living reference work entry


Sol-gel methods emerged by the 1940s when Geffcken and Bergen produced single oxide coatings and Schroeder first deposited thin films. Subsequently, scientists and engineers have used sol-gel processes, which drive individual particles or sols through a gelation process into a larger mass, in numerous applications. Recently, sol-gel processing techniques have extended to nanoparticle synthesis because sol-gel techniques are simple, are inexpensive, and may be used to tune material properties. This chapter critically reviews methods that have been widely used for decades and new cutting-edge strategies driving development of exciting, emerging technologies. Examples include tuning photon capture in solar cells, enhancing magnetic properties, and providing complex biosensing capabilities.


Coatings Membranes Nanoparticle composites Nanoparticles Silica sol-gels Sol-gel Titania sol-gels 



The authors express appreciation for the support from the University of Utah start-up funds. We also wish to thank the US National Science Foundation CBET for a grant (NSF CBET-1125490) to one of us (LP) during part of the time in which this work was carried out. Any opinions, findings, and conclusions or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the US National Science Foundation. The authors also express appreciation to Scott Miller, Cecilia Petit, and Shilpa Bhansali for insightful conversations.


  1. 1.
    C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, Boston, 1990)Google Scholar
  2. 2.
    L.L. Hench, J.K. West, The sol–gel process. Chem. Rev. 90(1), 33–72 (1990)CrossRefGoogle Scholar
  3. 3.
    Wikipedia, Sol Gel (2013) 30 June 2013 [cited 2013]. Available from:
  4. 4.
    [cited 2013]. Available from:
  5. 5.
    H.C. Wang et al., Analysis of parameters and interaction between parameters in preparation of uniform silicon dioxide nanoparticles using response surface methodology. Ind. Eng. Chem. Res. 45(24), 8043–8048 (2006)CrossRefGoogle Scholar
  6. 6.
    A. Montes et al., Silica microparticles precipitation by two processes using supercritical fluids. J. Supercrit. Fluids 75, 88–93 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Depardieu et al., Thermo-stimulable wax@water@SiO2 multicore-shell capsules. Part. Part. Syst. Charact. 30(2), 185–192 (2013)CrossRefGoogle Scholar
  8. 8.
    A. Jaroenworaluck et al., Nanocomposite TiO2-SiO2 gel for UV absorption. Chem. Eng. J. 181, 45–55 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Boualleg et al., Selective and regular localization of accessible Pt nanoparticles inside the walls of an ordered silica: application as a highly active and well-defined heterogeneous catalyst for propene and styrene hydrogenation reactions. J. Catal. 284(2), 184–193 (2011)CrossRefGoogle Scholar
  10. 10.
    K.D. Kim, S.S. Kim, H.T. Kim, Formation and characterization of silica-coated magnetic nanoparticles by sol–gel method. J. Ind. Eng. Chem. 11(4), 584–589 (2005)Google Scholar
  11. 11.
    J.Q. Zhao et al., In situ synthesis of magnetic mesoporous silica via sol–gel process coupled with precipitation and oxidation. Particuology 9(1), 56–62 (2011)CrossRefGoogle Scholar
  12. 12.
    E. Ranjbakhsh et al., Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles. Chem. Eng. J. 179, 272–276 (2012)CrossRefGoogle Scholar
  13. 13.
    K. Li et al., Self-assembled Nafion (R)/metal oxide nanoparticles hybrid proton exchange membranes. J. Membr. Sci. 347(1–2), 26–31 (2010)CrossRefGoogle Scholar
  14. 14.
    S.W. Chuang, S.L.C. Hsu, Y.H. Liu, Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells. J. Membr. Sci. 305(1–2), 353–363 (2007)CrossRefGoogle Scholar
  15. 15.
    D. Gomes, S.P. Nunes, K.V. Peinemann, Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)-silica nanocomposites. J. Membr. Sci. 246(1), 13–25 (2005)CrossRefGoogle Scholar
  16. 16.
    Y.Y. Lv et al., Generalized synthesis of core-shell structured nano-zeolite@ordered mesoporous silica composites. Catal. Today 204, 2–7 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Prokopowicz, A. Przyjazny, Synthesis of sol–gel mesoporous silica materials providing a slow release of doxorubicin. J. Microencapsul. 24(7), 694–713 (2007)CrossRefGoogle Scholar
  18. 18.
    Z.F. Yao et al., A novel method to prepare gold-nanoparticle-modified nanowires and their spectrum study. Chem. Eng. J. 166(1), 378–383 (2011)CrossRefGoogle Scholar
  19. 19.
    P. Yang et al., Preparation and thermo-mechanical properties of heat-resistant epoxy/silica hybrid materials. Polym. Eng. Sci. 48(6), 1214–1221 (2008)CrossRefGoogle Scholar
  20. 20.
    J. Du, L. Zhan, S.L. Chen, Wash fastness of dyed fabric treated by the sol–gel process. Color. Technol. 121(1), 29–36 (2005)CrossRefGoogle Scholar
  21. 21.
    Y.P. Gokhale et al., Disintegration process of surface stabilized sol–gel TiO2 nanoparticles by population balances. Chem. Eng. Sci. 64(24), 5302–5307 (2009)CrossRefGoogle Scholar
  22. 22.
    D.L. Marchisio, F. Omegna, A.A. Barresi, Production of TiO2 nanoparticles with controlled characteristics by means of a vortex reactor. Chem. Eng. J. 146(3), 456–465 (2009)CrossRefGoogle Scholar
  23. 23.
    Z.Z. Baros, B.K. Adnadevic, Weibull cumulative distribution function for modeling the isothermal kinetics of the titanium-oxo-alkoxy cluster growth. Ind. Eng. Chem. Res. 52(5), 1836–1844 (2013)CrossRefGoogle Scholar
  24. 24.
    J.R. Raji, K. Palanivelu, Sunlight-induced photocatalytic degradation of organic pollutants by carbon-modified nanotitania with vegetable oil as precursor. Ind. Eng. Chem. Res. 50(6), 3130–3138 (2011)CrossRefGoogle Scholar
  25. 25.
    M.Y. Ma et al., Preparation of cost-effective TiO2-outerloaded porous lava composites using supercritical CO2 and their photocatalytic activity for methylene blue degradation. Chin. J. Catal. 31(10), 1221–1226 (2010)CrossRefGoogle Scholar
  26. 26.
    NIST, Tetrabutyl Titanate (2011) [cited 2013]. Available from:
  27. 27.
    T. Yu et al., Characterization, activity and kinetics of a visible light driven photocatalyst: cerium and nitrogen co-doped TiO2 nanoparticles. Chem. Eng. J. 157(1), 86–92 (2010)CrossRefGoogle Scholar
  28. 28.
    V. Rodriguez-Gonzalez et al., Silver-TiO2 nanocomposites: synthesis and harmful algae bloom UV-photoelimination. Appl. Catal. B Environ. 98(3–4), 229–234 (2010)CrossRefGoogle Scholar
  29. 29.
    T. Ohno et al., Morphology of a TiO2 Photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J. Catal. 203(1), 82–86 (2001)CrossRefGoogle Scholar
  30. 30.
    X. Yang et al., Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde. J. Catal. 252(2), 296–302 (2007)CrossRefGoogle Scholar
  31. 31.
    C.P. Huang et al., Characteristic of an innovative TiO2/Fe0 composite for treatment of azo dye. Sep. Purif. Technol. 58(1), 152–158 (2007)CrossRefGoogle Scholar
  32. 32.
    C. Shen et al., Facile synthesis and photocatalytic properties of TiO2 nanoparticles supported on porous glass beads. Chem. Eng. J. 209, 478–485 (2012)CrossRefGoogle Scholar
  33. 33.
    V.D. Binas et al., Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light. Appl. Catal. B Environ. 113–114, 79–86 (2012)Google Scholar
  34. 34.
    Z.L. Shi, X.X. Zhang, S.H. Yao, Preparation and photocatalytic activity of TiO2 nanoparticles co-doped with Fe and La. Particuology 9(3), 260–264 (2011)CrossRefGoogle Scholar
  35. 35.
    S.H. Yao, J.Y. Li, Z.L. Shi, Immobilization of TiO2 nanoparticles on activated carbon fiber and its photodegradation performance for organic pollutants. Particuology 8(3), 272–278 (2010)CrossRefGoogle Scholar
  36. 36.
    Y.H. Peng, G.F. Huang, W.Q. Huang, Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Adv. Powder Technol. 23(1), 8–12 (2012)CrossRefGoogle Scholar
  37. 37.
    J.T. Park et al., Preparation of TiO2 spheres with hierarchical pores via grafting polymerization and sol–gel process for dye-sensitized solar cells. J. Mater. Chem. 20(39), 8521–8530 (2010)CrossRefGoogle Scholar
  38. 38.
    J.T. Park et al., Fabrication of double layer photoelectrodes using hierarchical TiO2 nanospheres for dye-sensitized solar cells. J. Ind. Eng. Chem. 18(1), 449–455 (2012)CrossRefGoogle Scholar
  39. 39.
    M. Lande et al., An efficient green synthesis of quinoxaline derivatives using carbon-doped MoO3-TiO2 as a heterogeneous catalyst. J. Ind. Eng. Chem. 18(1), 277–282 (2012)CrossRefGoogle Scholar
  40. 40.
    F. Zhang et al., Sol-gel preparation of PAA-g-PVDF/TiO2 nanocomposite hollow fiber membranes with extremely high water flux and improved antifouling property. J. Membr. Sci. 432, 25–32 (2013)CrossRefGoogle Scholar
  41. 41.
    F.M. Shi et al., Preparation and characterization of PVDF/TiO2 hybrid membranes with ionic liquid modified nano-TiO2 particles. J. Membr. Sci. 427, 259–269 (2013)CrossRefGoogle Scholar
  42. 42.
    A. Razmjou et al., Titania nanocomposite polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process. J. Membr. Sci. 380(1–2), 98–113 (2011)CrossRefGoogle Scholar
  43. 43.
    T. Lopez et al., Synthesis, characterization and in vitro cytotoxicity of Pt-TiO2 nanoparticles. Adsorpt. J. Int. Adsorpt. Soc. 17(3), 573–581 (2011)CrossRefGoogle Scholar
  44. 44.
    J.F. Lu et al., Rapid and continuous synthesis of cobalt aluminate nanoparticles under subcritical hydrothermal conditions with in-situ surface modification. Chem. Eng. Sci. 85, 50–54 (2013)CrossRefGoogle Scholar
  45. 45.
    Q.H. Meng et al., Sol-hydrothermal synthesis and characterization of lead zirconate titanate fine particles. Adv. Powder Technol. 24(1), 212–217 (2013)CrossRefGoogle Scholar
  46. 46.
    X.H. Li et al., A sol–gel method to synthesize indium tin oxide nanoparticles. Particuology 9(5), 471–474 (2011)CrossRefGoogle Scholar
  47. 47.
    B. Lee, S.K. Koo, Preparation of silver nanoparticles on the surface of fine magnetite particles by a chemical reduction. J. Ind. Eng. Chem. 17(4), 762–766 (2011)CrossRefGoogle Scholar
  48. 48.
    M. Peter et al., Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem. Eng. J. 158(2), 353–361 (2010)CrossRefGoogle Scholar
  49. 49.
    S. Nakayama, K. Ihara, M. Senna, Structure and properties of ibuprofen-hydroxypropyl methylcellulose nanocomposite gel. Powder Technol. 190(1–2), 221–224 (2009)CrossRefGoogle Scholar
  50. 50.
    M.N. Salimi et al., Effect of processing conditions on the formation of hydroxyapatite nanoparticles. Powder Technol. 218, 109–118 (2012)CrossRefGoogle Scholar
  51. 51.
    A. Saxena et al., Kinetics of adsorption of sulfur mustard on Al2O3 nanoparticles with and without impregnants. J. Chem. Technol. Biotechnol. 84(12), 1860–1872 (2009)CrossRefGoogle Scholar
  52. 52.
    Y.C. Sharma et al., Alumina nanoparticles for the removal of Ni(II) from aqueous solutions. Ind. Eng. Chem. Res. 47(21), 8095–8100 (2008)CrossRefGoogle Scholar
  53. 53.
    A. Santos et al., Synthesis and characterization of iron-PVA hydrogel microspheres and their use in the arsenic (V) removal from aqueous solution. Chem. Eng. J. 210, 432–443 (2012)CrossRefGoogle Scholar
  54. 54.
    Y.Z. Zhang et al., Li2ZrO3 nanoparticles as absorbent for in-situ removal of CO2 in water-gas shift reaction to enhance H2 production. Chin. J. Catal. 33(9), 1572–1577 (2012)Google Scholar
  55. 55.
    A. Katelnikovas et al., Characterization of cerium-doped yttrium aluminium garnet nanopowders synthesized via sol–gel process. Chem. Eng. Commun. 195(7), 758–769 (2008)CrossRefGoogle Scholar
  56. 56.
    D.D. Jia, Nanophosphors for white light LEDS. Chem. Eng. Commun. 194(10–12), 1666–1687 (2007)CrossRefGoogle Scholar
  57. 57.
    R.T. Kumar et al., Synthesis, characterization and performance of porous Sr(II)-added ZnAl2O4 nanomaterials for optical and catalytic applications. Powder Technol. 224, 147–154 (2012)CrossRefGoogle Scholar
  58. 58.
    Y.G. Peng et al., Preparation of ZnO nanopowder by a novel ultrasound assisted non-hydrolytic sol–gel process and its application in photocatalytic degradation of CI Acid Red 249. Powder Technol. 233, 325–330 (2013)CrossRefGoogle Scholar
  59. 59.
    N. Luo et al., Systematic study of detonation synthesis of Ni-based nanoparticles. Chem. Eng. J. 210, 114–119 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mason J. Burger
    • 1
  • Benjamin J. Robinson
    • 1
  • Leonard F. PeaseIII
    • 1
  1. 1.Chemical Engineering, Internal Medicine, Pharmaceutics and Pharmaceutical Chemistry, The Nano Institute of UtahUniversity of UtahSalt Lake CityUSA

Personalised recommendations