Advertisement

Water Transfer of Hydrophobic Nanoparticles: Principles and Methods

  • Marlene Branca
  • Mahmoud Ibrahim
  • Diana Ciuculescu
  • Karine Philippot
  • Catherine AmiensEmail author
Living reference work entry

Abstract

This chapter gives an overview of the main methods available to transfer hydrophobic inorganic nanoparticles (metal, oxides, and semiconductors) into water such as place exchange of the capping agent, intercalation strategy with amphiphilic compounds or direct synthesis in the presence of those, and silica coating. The underlying principles are presented for each method, including respective advantages and drawbacks.

Keywords

Water transfer Nanoparticles Nanocrystals Nanoclusters Surface functionalization Nanochemistry Colloidal solutions Ligand exchange Coating Encapsulation 

References

  1. 1.
    D.P. Cormode, B.L. Sanchez-Gaytan, A.J. Mieszawska, Z.A. Fayad, W.J.M. Mulder, NMR Biomed. 26, 766 (2013)Google Scholar
  2. 2.
    C. Xu, S. Sun, Polym. Int. 56, 821 (2007)Google Scholar
  3. 3.
    J. Yang, J.Y. Lee, J.Y. Ying, Chem. Soc. Rev. 40, 1672 (2011)Google Scholar
  4. 4.
    J. Nam, N. Won, J. Bang, H. Jin, J. Park, S. Jung, S. Jung, Y. Park, S. Kim, Advanced Drug Delivery Reviews 65, 622 (2013)Google Scholar
  5. 5.
    K.S. Birdi, Handbook of Surface and Colloid Chemistry (CRC Press, New York/Boca Raton, 1997)Google Scholar
  6. 6.
    J. Turkevich, P.C. Stevenson, J.J.C.S. Hillier, Discuss. Faraday Soc. 11, 55 (1951)Google Scholar
  7. 7.
    J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, J. Phys. Chem. B 110, 15700 (2006)Google Scholar
  8. 8.
    N. Erathodiyil, J.Y. Ying, Acc. Chem. Res. 44, 925 (2011)Google Scholar
  9. 9.
    G. Schmid, V. Maihack, F. Lantermann, S. Peschel, J. Chem. Soc. Dalton Trans. (5), 589 (1996)Google Scholar
  10. 10.
    G.R. Laura Durán Pachón, Appl. Organomet. Chem. 22, 288 (2008)Google Scholar
  11. 11.
    A. Caragheorgheopol, V. Chechik, Phys. Chem. Chem. Phys. 10, 5029 (2008)Google Scholar
  12. 12.
    G. Schmid, Chem. Rev. 92, 1709 (1992)Google Scholar
  13. 13.
    A.G. Kanaras, F.S. Kamounah, K. Schaumburg, C. Kiely, M. Brust, Chem. Commun. (20), 2294 (2002)Google Scholar
  14. 14.
    T. Tsukatani, H. Fujihara, Langmuir 21, 12093 (2005)Google Scholar
  15. 15.
    O. Uzun, Y. Hu, A. Verma, S. Chen, A. Centrone, F. Stellacci, Chem. Commun. (Camb.) (2), 196 (2008)Google Scholar
  16. 16.
    Y. Ju-Nam, Y.-S. Chen, J.J. Ojeda, D.W. Allen, N.A. Cross, P.H.E. Gardiner, N. Bricklebank, RSC Adv. 2, 10345 (2012)Google Scholar
  17. 17.
    P.-J. Debouttière, Y. Coppel, A. Denicourt-Nowicki, A. Roucoux, B. Chaudret, K. Philippot, Eur. J. Inorg. Chem. 2012, 1229 (2012)Google Scholar
  18. 18.
    P.-J. Debouttiere, V. Martinez, K. Philippot, B. Chaudret, Dalton Trans. (46), 10172 (2009)Google Scholar
  19. 19.
    M. Guerrero, A. Roucoux, A. Denicourt-Nowicki, H. Bricout, E. Monflier, V. Collière, K. Fajerwerg, K. Philippot, Catal. Today 183, 34 (2012)Google Scholar
  20. 20.
    N. Mejias, A. Serra-Muns, R. Pleixats, A. Shafir, M. Tristany, Dalton Trans. (37), 7748 (2009)Google Scholar
  21. 21.
    R.A. Sperling, W.J. Parak, Philos. Trans. R. Soc. A 368, 1333 (2010)Google Scholar
  22. 22.
    G. Schmid, N. Klein, L. Korste, U. Kreibig, D. Schönauer, Polyhedron 7, 605 (1988)Google Scholar
  23. 23.
    C.N. Kostelansky, J.J. Pietron, M.-S. Chen, W.J. Dressick, K.E. Swider-Lyons, D.E. Ramaker, R.M. Stroud, C.A. Klug, B.S. Zelakiewicz, T.L. Schull, J. Phys. Chem. B 110, 21487 (2006)Google Scholar
  24. 24.
    M.G. Warner, S.M. Reed, J.E. Hutchison, Chem. Mater. 12, 3316 (2000)Google Scholar
  25. 25.
    F. Manea, C. Bindoli, S. Polizzi, L. Lay, P. Scrimin, Langmuir 24, 4120 (2008)Google Scholar
  26. 26.
    S. Tamang, G. Beaune, I. Texier, P. Reiss, ACS Nano 5, 9392 (2011)Google Scholar
  27. 27.
    J. Wang, J. Xu, M.D. Goodman, Y. Chen, M. Cai, J. Shinar, Z. Lin, J. Mater. Chem. 18, 3270 (2008)Google Scholar
  28. 28.
    N. Miguel-Sancho, O. Bomati-Miguel, G. Colom, J.P. Salvador, M.P. Marco, J. Santamaria, Chem. Mater. 23, 2795 (2011)Google Scholar
  29. 29.
    Q. Zhang, K. Song, J. Zhao, X. Kong, Y. Sun, X. Liu, Y. Zhang, Q. Zeng, H. Zhang, J. Colloid Interface Sci. 336, 171 (2009)Google Scholar
  30. 30.
    M. Hatakeyama, H. Kishi, Y. Kita, K. Imai, K. Nishio, S. Karasawa, Y. Masaike, S. Sakamoto, A. Sandhu, A. Tanimoto, T. Gomi, E. Kohda, M. Abe, H. Handa, J. Mater. Chem. 21, 5959 (2011)Google Scholar
  31. 31.
    Y. Xu, Y. Qin, S. Palchoudhury, Y. Bao, Langmuir 27, 8990 (2011)Google Scholar
  32. 32.
    A. Hofmann, S. Thierbach, A. Semisch, A. Hartwig, M. Taupitz, E. Ruhl, C. Graf, J. Mater. Chem. 20, 7842 (2010)Google Scholar
  33. 33.
    D.I. Gittins, F. Caruso, Angew. Chem. Int. Ed. 40, 3001 (2001)Google Scholar
  34. 34.
    V.J. Gandubert, B.R. Lennox, Langmuir 21(14), 6532 (2005)Google Scholar
  35. 35.
    E. Coronado, A. Ribera, J. Garcia-Martinez, N. Linares, L.M. Liz-Marzan, J. Mater. Chem. 18, 5682 (2008)Google Scholar
  36. 36.
    R. DePalma, S. Peeters, M.J. VanBael, H. VandenRul, K. Bonroy, W. Laureyn, J. Mullens, G. Borghs, G. Maes, Chem. Mater. 19, 1821 (2007)Google Scholar
  37. 37.
    A.Z. Ernst, L. Sun, K. Wiaderek, A. Kolary, S. Zoladek, P.J. Kulesza, J.A. Cox, Electroanalysis 19, 2103 (2007)Google Scholar
  38. 38.
    L. Liu, X. Zhong, Chem. Commun. 48, 5718 (2012)Google Scholar
  39. 39.
    T. Zhang, J. Ge, Y. Hu, Y. Yin, Nano Lett. 7, 3203 (2007)Google Scholar
  40. 40.
    V. Salgueirino-Maceira, L.M. Liz-Marzan, M. Farle, Langmuir 20, 6946 (2004)Google Scholar
  41. 41.
    Y. Wei, J. Yang, J.Y. Ying, Chem. Commun. 46, 3179 (2010)Google Scholar
  42. 42.
    J.-I. Tamura, M. Fukuda, J. Tanaka, M. Kawa, J. Carbohydr. Chem. 21, 445 (2002)Google Scholar
  43. 43.
    L. Lartigue, C. Innocenti, T. Kalaivani, A. Awwad, M.D.M. Sanchez Duque, Y. Guari, J. Larionova, C. Guérin, J.-L.G. Montero, V.R. Barragan-Montero, P. Arosio, A. Lascialfari, D. Gatteschi, C. Sangregorio, J. Am. Chem. Soc. 133, 10459 (2011)Google Scholar
  44. 44.
    Y. Zhao, Y. Li, Y. Song, W. Jiang, Z. Wu, Y.A. Wang, J. Sun, J. Wang, J. Colloid Interface Sci. 339, 336 (2009)Google Scholar
  45. 45.
    B. Basly, G. Popa, S. Fleutot, B. Pichon, A. Garofalo, C. Ghobril, C. Billotey, A. Berniard, P. Bonazza, M. Herve, D. Felder-Flesch, S. Begin, Dalton Trans. 42, 2146 (2013)Google Scholar
  46. 46.
    A. Stocco, M. Chanana, G. Su, P. Cernoch, B.P. Binks, D. Wang, Angew. Chem. Int. Ed. 51, 9647 (2012)Google Scholar
  47. 47.
    A. Dazzazi, Y. Coppel, M. In, C. Chassenieux, P. Mascalchi, L. Salome, A. Bouhaouss, M.L. Kahn, F. Gauffre, J. Mater. Chem. C 1, 2158 (2013)Google Scholar
  48. 48.
    J. Rubio-Garcia, A. Dazzazi, Y. Coppel, P. Mascalchi, L. Salome, A. Bouhaouss, M.L. Kahn, F. Gauffre, J. Mater. Chem. 22, 14538 (2012)Google Scholar
  49. 49.
    W.W. Yu, E. Chang, C.M. Sayes, R. Drezek, V.L. Colvin, Nanotechnology 17, 4483 (2006)Google Scholar
  50. 50.
    M. Yoon, J. Choi, J. Cho, Chem. Mater. 25, 1735 (2013)Google Scholar
  51. 51.
    H. Bricout, F. Hapiot, A. Ponchel, S. Tilloy, E. Monflier, Sustainability 1, 924 (2009)Google Scholar
  52. 52.
    Y. Wang, J.F. Wong, X. Teng, X.Z. Lin, H. Yang, Nano Lett 3, 1555 (2003)Google Scholar
  53. 53.
    N. Depalo, R. Comparelli, M.L. Curri, M. Striccoli, A. Agostiano, Synth. Met. 148, 43 (2005)Google Scholar
  54. 54.
    N. Depalo, R. Comparelli, M. Striccoli, M.L. Curri, P. Fini, L. Giotta, A. Agostiano, J. Phys. Chem. B 110, 17388 (2006)Google Scholar
  55. 55.
    S. Rakshit, S. Vasudevan, ACS Nano 2, 1473 (2008)Google Scholar
  56. 56.
    H. Su, Y. Liu, D. Wang, C. Wu, C. Xia, Q. Gong, B. Song, H. Ai, Biomaterials 34, 1193 (2013)Google Scholar
  57. 57.
    G.P. Holland, R. Sharma, J.O. Agola, S. Amin, V.C. Solomon, P. Singh, D.A. Buttry, J.L. Yarger, Chem. Mater. 19, 2519 (2007)Google Scholar
  58. 58.
    Y. Lin, L. Zhang, W. Yao, H. Qian, D. Ding, W. Wu, X. Jiang, ACS Appl. Mater. Interfaces 3, 995 (2011)Google Scholar
  59. 59.
    T. Ninjbadgar, D.F. Brougham, Adv. Funct. Mater. 21, 4769 (2011)Google Scholar
  60. 60.
    F. Herranz, M.P. Morales, A.G. Roca, R. Vilar, J. Ruiz-Cabello, Contrast Media Mol. Imaging 3, 215 (2008)Google Scholar
  61. 61.
    N. Tomczak, D. Jańczewski, M. Han, G.J. Vancso, Prog. Polym. Sci. 34, 393 (2009)Google Scholar
  62. 62.
    F. Zhang, E. Lees, F. Amin, P.R. Gil, F. Yang, P. Mulvaney, W.J. Parak, Small 7, 3113 (2011)Google Scholar
  63. 63.
    N.R. Jana, P.K. Patra, A. Saha, S.K. Basiruddin, N. Pradhan, J. Phys. Chem. C 113, 21484 (2009)Google Scholar
  64. 64.
    S. Saliba, C. Valverde Serrano, J. Keilitz, M.L. Kahn, C. Mingotaud, R. Haag, J.-D. Marty, Chem. Mater. 22, 6301 (2010)Google Scholar
  65. 65.
    A.M. Smith, S. Nie, Angew. Chem. Int. Ed. 47, 9916 (2008)Google Scholar
  66. 66.
    G. Saravanan, T. Hara, H. Yoshikawa, Y. Yamashita, S. Ueda, K. Kobayashi, H. Abe, Chem. Commun (Cambridge, UK) 48, 7441 (2012)Google Scholar
  67. 67.
    J.T. Duong, M.J. Bailey, T.E. Pick, P.M. McBride, E.L. Rosen, R. Buonsanti, D.J. Milliron, B.A. Helms, J. Polym. Sci. A Polym. Chem. 50, 3719 (2012)Google Scholar
  68. 68.
    J.A. Liu, H. Li, W. Wang, H. Xu, X. Yang, J. Liang, Z. He, Small 2, 999 (2006)Google Scholar
  69. 69.
    T. Nann, Chem. Commun. 1735 (2005)Google Scholar
  70. 70.
    J. Minglei, Y. Wuli, R. Qingguang, L. Daru, Nanotechnology 20, 075101 (2009)Google Scholar
  71. 71.
    S.-W. Kim, S. Kim, J.B. Tracy, A. Jasanoff, M.G. Bawendi, J. Am. Chem. Soc. 127(13), 4556 (2005)Google Scholar
  72. 72.
    K. Susumu, H.T. Uyeda, I.L. Medintz, T. Pons, J.B. Delehanty, H. Mattoussi, J. Am. Chem. Soc. 129, 13987 (2007)Google Scholar
  73. 73.
    W. Liu, A.B. Greytak, J. Lee, C.R. Wong, J. Park, L.F. Marshall, W. Jiang, P.N. Curtin, A.Y. Ting, D.G. Nocera, D. Fukumura, R.K. Jain, M.G. Bawendi, J. Am. Chem. Soc. 132, 472 (2010)Google Scholar
  74. 74.
    H.B. Na, G. Palui, J.T. Rosenberg, X. Ji, S.C. Grant, H. Mattoussi, ACS Nano 6, 389 (2011)Google Scholar
  75. 75.
    M. Lattuada, T.A. Hatton, Langmuir 23, 2158 (2007)Google Scholar
  76. 76.
    A.M. Shanmugharaj, W.S. Choi, S.H. Ryu, J. Polym. Sci. A Polym. Chem. 48, 5092 (2010)Google Scholar
  77. 77.
    F.X. Hu, K.G. Neoh, L. Cen, E.-T. Kang, Biomacromolecules 7, 809 (2006)Google Scholar
  78. 78.
    Q.-L. Fan, K.-G. Neoh, E.-T. Kang, B. Shuter, S.-C. Wang, Biomaterials 28, 5426 (2007)Google Scholar
  79. 79.
    L. Wang, K.G. Neoh, E.T. Kang, B. Shuter, S.-C. Wang, Adv. Funct. Mater. 19, 2615 (2009)Google Scholar
  80. 80.
    T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A.L. Rogach, S. Keller, J. Radler, G. Natile, W.J. Parak, Nano Lett. 4, 703 (2004)Google Scholar
  81. 81.
    C. Geidel, S. Schmachtel, A. Riedinger, C. Pfeiffer, K. Müllen, M. Klapper, W.J. Parak, Small 7, 2929 (2011)Google Scholar
  82. 82.
    M.A. Petruska, A.P. Bartko, V.I. Klimov, J. Am. Chem. Soc. 126, 714 (2004)Google Scholar
  83. 83.
    G. Jiang, J. Pichaandi, N.J.J. Johnson, R.D. Burke, F.C.J.M. van Veggel, Langmuir 28, 3239 (2012)Google Scholar
  84. 84.
    K.E. Price, D.T. McQuade, Chem. Commun. 1714 (2005)Google Scholar
  85. 85.
    Z. Cheng, S. Liu, H. Gao, W. Tremel, N. Ding, R. Liu, P.W. Beines, W. Knoll, Macromol. Chem. Phys. 209, 1145 (2008)Google Scholar
  86. 86.
    J. Qin, Y.S. Jo, M. Muhammed, Angew. Chem. Int. Ed. 48, 7845 (2009)Google Scholar
  87. 87.
    E.W. Edwards, M. Chanana, D. Wang, H. Möhwald, Angew. Chem. Int. Ed. 47(2), 320 (2008)Google Scholar
  88. 88.
    C. Boyer, A. Bousquet, J. Rondolo, M.R. Whittaker, M.H. Stenzel, T.P. Davis, Macromolecules 43, 3775 (2010)Google Scholar
  89. 89.
    Y. Jin, C. Jia, S.-W. Huang, M. O’Donnell, X. Gao, Nat. Commun. 1, 2 (2010)Google Scholar
  90. 90.
    A.S. Karakoti, S. Das, S. Thevuthasan, S. Seal, Angew. Chem. Int. Ed. 50, 1980 (2011)Google Scholar
  91. 91.
    M. Moros, B. Pelaz, P. Lopez-Larrubia, M.L. Garcıa-Martin, V. Grazu, J.M. de la Fuente, Nanoscale 2, 1746 (2010)Google Scholar
  92. 92.
    I. Garcia, M. Marradi, S. Penades, Nanomedicine 5, 777 (2010)Google Scholar
  93. 93.
    T. Jafari, A. Simchi, N. Khakpash, J. Colloid Interface Sci. 345, 64 (2010)Google Scholar
  94. 94.
    J.M. El Khoury, D. Caruntu, C.J. O’Connor, K.-U. Jeong, S.Z.D. Cheng, J. Hu, J. Nanoparticle Res. 9, 959 (2007)Google Scholar
  95. 95.
    G.-S. Yi, G.-M. Chow, Chem. Mater. 19, 341 (2006)Google Scholar
  96. 96.
    A. Boni, L. Albertazzi, C. Innocenti, M. Gemmi, A. Bifone, Langmuir. 29(35), 10973 (2013)Google Scholar
  97. 97.
    C. Zhou, H. Shen, Y. Guo, L. Xu, J. Niu, Z. Zhang, Z. Du, J. Chen, L.S. Li, J. Colloid Interface Sci. 344, 279 (2010)Google Scholar
  98. 98.
    C. Zhou, W. Xu, S. Lou, Z. Zhang, L.S. Li, J. Chen, Colloids Surf. A 355, 139 (2010)Google Scholar
  99. 99.
    H.-M. Yang, C.W. Park, T. Ahn, B. Jung, B.-K. Seo, J.-H. Park, J.-D. Kim, J. Colloid Interface Sci. 391, 158 (2013)Google Scholar
  100. 100.
    H.-M. Yang, H.J. Lee, K.-S. Jang, C.W. Park, H.W. Yang, W. Do Heo, J.-D. Kim, J. Mater. Chem. 19, 4566 (2009)Google Scholar
  101. 101.
    C. Durand-Gasselin, M. Capelot, N. Sanson, N. Lequeux, Langmuir 26, 12321 (2010)Google Scholar
  102. 102.
    B.W. Muir, B.A. Moffat, P. Harbour, G. Coia, G. Zhen, L. Waddington, J. Scoble, D. Krah, S.H. Thang, Y.K. Chong, P. Mulvaney, P. Hartley, J. Phys. Chem. C 113, 16615 (2009)Google Scholar
  103. 103.
    N. Gaponik, S.G. Hickey, D. Dorfs, A.L. Rogach, A. Eychmüller, Small 6, 1364 (2010)Google Scholar
  104. 104.
    E.V. Shtykova, X. Huang, X. Gao, J.C. Dyke, A.L. Schmucker, B. Dragnea, N. Remmes, D.V. Baxter, B. Stein, P.V. Konarev, D.I. Svergun, L.M. Bronstein, J. Phys. Chem. C 112, 16809 (2008)Google Scholar
  105. 105.
    N.A. Lewinski, H. Zhu, H.-J. Jo, D. Pham, R.R. Kamath, C.R. Ouyang, C.D. Vulpe, V.L. Colvin, R.A. Drezek, Environ. Sci. Technol. 44, 1841 (2010)Google Scholar
  106. 106.
    S. Machunsky, P. Grimm, H.-J. Schmid, U.A. Peuker, Colloids Surf. A Physicochem. Eng. Asp. 348, 186 (2009)Google Scholar
  107. 107.
    D. Kim, M.K. Yu, T.S. Lee, J.J. Park, Y.Y. Jeong, S. Jon, Nanotechnology 22(15), 155101 (2011)Google Scholar
  108. 108.
    B. Zhang, J. Cheng, D. Li, X. Liu, G. Ma, J. Chang, Mater. Sci. Eng. B 149, 87 (2008)Google Scholar
  109. 109.
    M. Nuopponen, H. Tenhu, Langmuir 23, 5352 (2007)Google Scholar
  110. 110.
    Z. Wu, Y. Zhao, F. Qiu, Y. Li, S. Wang, B. Yang, L. Chen, J. Sun, J. Wang, Colloids Surf. A Physicochem. Eng. Asp. 350, 121 (2009)Google Scholar
  111. 111.
    I. Robinson, C. Alexander, L.D. Tung, D.G. Fernig, N.T.K. Thanh, J. Magn. Magn. Mater. 321, 1421 (2009)Google Scholar
  112. 112.
    S.A. Shah, M.H. Asdi, M.U. Hashmi, M.F. Umar, S.-U. Awan, Mater. Chem. Phys. 137, 365 (2012)Google Scholar
  113. 113.
    J.L. Zhang, R.S. Srivastava, R.D.K. Misra, Langmuir 23, 6342 (2007)Google Scholar
  114. 114.
    H.J. Jeon, D.H. Go, S.-Y. Choi, K.M. Kim, J.Y. Lee, D.J. Choo, H.-O. Yoo, J.M. Kim, J. Kim, Colloids Surf. A Physicochem. Eng. Asp. 317, 496 (2008)Google Scholar
  115. 115.
    B. Zhang, X. Wang, F. Liu, Y. Cheng, D. Shi, Langmuir 28, 16605 (2012)Google Scholar
  116. 116.
    Y. Li, B. Shen, L. Liu, H. Xu, X. Zhong, Colloids Surf. A Physicochem. Eng. Asp. 410, 144 (2012)Google Scholar
  117. 117.
    P. Christian, M. Bromfield, J. Mater. Chem. 20, 1135 (2010)Google Scholar
  118. 118.
    H. Kloust, E. Pöselt, S. Kappen, C. Schmidtke, A. Kornowski, W. Pauer, H.-U. Moritz, H. Weller, Langmuir 28, 7276 (2012)Google Scholar
  119. 119.
    A. Kohut, A. Voronov, W. Peukert, Langmuir 23, 504 (2007)Google Scholar
  120. 120.
    J. Salado, M. Insausti, L. Lezama, I. Gil de Muro, M. Moros, B. Pelaz, V. Grazu, J.M. de la Fuente, T. Rojo, Nanotechnology 23(31), 315102 (2012)Google Scholar
  121. 121.
    T. Sun, K. Li, Y. Li, C. Li, W. Zhao, L. Chen, Y. Chang, New J. Chem. 36, 2383 (2012)Google Scholar
  122. 122.
    P.A. Jarzyna, T. Skajaa, A. Gianella, D.P. Cormode, D.D. Samber, S.D. Dickson, W. Chen, A.W. Griffioen, Z.A. Fayad, W.J.M. Mulder, Biomaterials 30, 6947 (2009)Google Scholar
  123. 123.
    D. Gentili, G. Ori, M. Comes Franchini, Chem. Commun. 5874 (2009)Google Scholar
  124. 124.
    P. Theamdee, R. Traiphol, B. Rutnakornpituk, U. Wichai, M. Rutnakornpituk, J. Nanoparticle Res. 13, 4463 (2011)Google Scholar
  125. 125.
    G. Vigil, Z. Xu, S. Steinberg, J. Israelachvili, J. Colloid Interface Sci. 165, 367 (1994)Google Scholar
  126. 126.
    A. Guerrero-Martinez, J. Perez-Juste, L.M. Liz-Marzan, Adv. Mater. (Weinheim, Ger.) 22, 1182 (2010)Google Scholar
  127. 127.
    S.T. Selvan, T.T.Y. Tan, D.K. Yi, N.R. Jana, Langmuir 26, 11631 (2010)Google Scholar
  128. 128.
    T. Nann, P. Mulvaney, Angew. Chem. Int. Ed. 43, 5393 (2004)Google Scholar
  129. 129.
    C. Earhart, N.R. Jana, N. Erathodiyil, J.Y. Ying, Langmuir 24, 6215 (2008)Google Scholar
  130. 130.
    A. Schätz, M. Hager, O. Reiser, Adv. Funct. Mater. 19(13), 2109 (2009)Google Scholar
  131. 131.
    N.R. Jana, C. Earhart, J.Y. Ying, Chem. Mater. 19, 5074 (2007)Google Scholar
  132. 132.
    A. Arizaga, A. Millan, U. Schubert, F. Palacio, J. Mater. Sci. 48, 2550 (2013)Google Scholar
  133. 133.
    R. Shen, P.H.C. Camargo, Y. Xia, H. Yang, Langmuir 24, 11189 (2008)Google Scholar
  134. 134.
    I. Gorelikov, N. Matsuura, Nano Lett. 8, 369 (2008)Google Scholar
  135. 135.
    F. Ye, S. Laurent, A. Fornara, L. Astolfi, J. Qin, A. Roch, A. Martini, M.S. Toprak, R.N. Muller, M. Muhammed, Contrast Media Mol. Imaging 7, 460 (2012)Google Scholar
  136. 136.
    R. Han, M. Yu, Q. Zheng, L. Wang, Y. Hong, Y. Sha, Langmuir 25, 12250 (2009)Google Scholar
  137. 137.
    J. Cha, P. Cui, J.-K. Lee, J. Mater. Chem. 20, 5533 (2010)Google Scholar
  138. 138.
    C. Graf, D.L.J. Vossen, A. Imhof, A. van Blaaderen, Langmuir 19, 6693 (2003)Google Scholar
  139. 139.
    N.J.J. Johnson, N.M. Sangeetha, J.-C. Boyer, V.F.C.J.M. van Veggel, Nanoscale 2, 771 (2010)Google Scholar
  140. 140.
    P.D. McNaughter, J.C. Bear, D.C. Steytler, A.G. Mayes, T. Nann, Angew. Chem. Int. Ed. 50, 10384 (2011)Google Scholar
  141. 141.
    H.L. Ding, Y.X. Zhang, S. Wang, J.M. Xu, S.C. Xu, G.H. Li, Chem. Mater. 24, 4572 (2012)Google Scholar
  142. 142.
    R. Koole, M.M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D.C. ‘t Hart, A. van Blaaderen, D. Vanmaekelbergh, A. Meijerink, Chem. Mater. 20, 2503 (2008)Google Scholar
  143. 143.
    Y. Han, J. Jiang, S.S. Lee, J.Y. Ying, Langmuir 24, 5842 (2008)Google Scholar
  144. 144.
    D.K. Yi, S.T. Selvan, S.S. Lee, G.C. Papaefthymiou, D. Kundaliya, J.Y. Ying, J. Am. Chem. Soc. 127, 4990 (2005)Google Scholar
  145. 145.
    M. Darbandi, R. Thomann, T. Nann, Chem. Mater. 17, 5720 (2005)Google Scholar
  146. 146.
    M. Darbandi, W. Lu, J. Fang, T. Nann, Langmuir 22, 4371 (2006)Google Scholar
  147. 147.
    J.C. Park, J.Y. Kim, E. Heo, K.H. Park, H. Song, Langmuir 26, 16469 (2010)Google Scholar
  148. 148.
    C. Cannas, A. Musinu, A. Ardu, F. Orru, D. Peddis, M. Casu, R. Sanna, F. Angius, G. Diaz, G. Piccaluga, Chem. Mater. 22, 3353 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marlene Branca
    • 1
    • 2
    • 3
    • 4
  • Mahmoud Ibrahim
    • 1
    • 2
    • 3
  • Diana Ciuculescu
    • 1
    • 2
    • 3
  • Karine Philippot
    • 1
    • 2
    • 3
  • Catherine Amiens
    • 1
    • 2
    • 3
    Email author
  1. 1.LCC (Laboratoire de Chimie de Coordination)CNRSToulouseFrance
  2. 2.UPSUniversité de ToulouseToulouseFrance
  3. 3.INPTUniversité de ToulouseToulouseFrance
  4. 4.LPCNO (Laboratoire de Physique et Chimie des Nanoobjets)CNRS, INSAToulouseFrance

Personalised recommendations