Fundamentals of Machine Vision

  • Christoph Stiller
  • Alexander Bachmann
  • Andreas Geiger
Reference work entry


Automobiles may acquire a rich variety of relevant information from image data and its analysis using machine vision techniques. This chapter provides an overview on the principles underlying image formation and image analysis. The perspective projection model is formulated to describe the mapping of the 3D real world onto the 2D image plane with its intrinsic and extrinsic calibration parameters. Image analysis typically begins with the identification of features. These may describe locations of particular local intensity patterns in a single image, such as edges or corners, or may quantify the 2D displacement of corresponding pixels between two images acquired at different time instances or by a multicamera system. Such features can be used to reconstruct the 3D geometry of the real world using stereo vision, motion stereo, or multiview reconstruction. Temporal tracking using Bayesian filters and its variations not only improves accuracy but readily allows for information fusion with data of other sensors. The chapter closes with two application examples. The first addresses object detection and tracking using multiple image features. The second application focuses on intersection understanding illustrating the large potential of high-level scene interpretation through machine vision.



The authors thank Dr. Christian Duchow for valuable contributions to an early version of this chapter.


  1. Bachmann A, Dang T (2007) Improving motion-based object detection by incorporating object-specific knowledge. Int J Intell Inf Database Syst, Special issue on: Information Processing in Intelligent Vehicles and Road Applications 2(2):258–276Google Scholar
  2. Barker A, Brown DE, Martin WN (1994) Bayesian estimation and the Kalman filter, technical report, IPC-94-002, 5Google Scholar
  3. Bay H, Tuytelaars T, van Gool L (2006) SURF: speeded up robust features. In: European conference on computer vision, Berlin, HeidelbergGoogle Scholar
  4. Bertozzi M, Broggi A, Castellucio S (1997) A real-time oriented system for vehicle detection. J Syst Archit 1:317–325CrossRefGoogle Scholar
  5. Calonder M, Lepetit V, Ozuysal M, Trzcinski T, Stretcha C, Fua P (2012) BRIEF: computing a local binary descriptor very fast. IEEE Trans Pattern Anal Mach Intell 7:1281–1298CrossRefGoogle Scholar
  6. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 6:679–698CrossRefGoogle Scholar
  7. Chen Z (2003) Bayesian filtering: from Kalman filters to particle filters, and beyond. Statistics 182(1):1–69CrossRefGoogle Scholar
  8. Cuchiari R, Piccard M (1999) Vehicle detection under day and night illumination. In: International ICSC symposium intelligent industrial automationGoogle Scholar
  9. Dang T, Hoffmann C, Stiller C (2009) Continuous stereo self-calibration by camera parameter tracking. IEEE Trans Image Process 18(7):1536–1550CrossRefMathSciNetGoogle Scholar
  10. Dickmanns ED (1994) The 4D-approach to visual control of autonomous systems. In: IAA NASA conference on intelligent robots in field factory service and space, HoustonGoogle Scholar
  11. Faugeras O (1993) Three dimensional computer vision: a geometric viewpoint. MIT Press, Cambridge, MAGoogle Scholar
  12. Franke U (1991) Real time 3d-road modeling for autonomous vehicle guidance. In: 7th Scandinavian conference on image analysis, AalborgGoogle Scholar
  13. Geiger A (2013) Probabilistic Models for 3D urban scene understanding from movable platforms, PhD thesis, Karlsruhe Institute of TechnologyGoogle Scholar
  14. Geiger A, Lenz P, Stiller C, Urtasun R (2013) Vision meets Robotics: the KITTI dataset. Int J Rob Res 32:1231–1237CrossRefGoogle Scholar
  15. Geiger A, Lauer M, Wojek C, Stiller C, Urtasun R (2014) 3D traffic scene understanding from movable platforms. IEEE Trans Pattern Anal Mach Intell 36(5):1012–1025CrossRefGoogle Scholar
  16. Ghanbarpour Asl H, Pourtakdoust SH (2007) UD Covariance factorization for unscented Kalman filter using sequential measurements update. Int J Eng Nat Sc 1:4Google Scholar
  17. Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  18. Grewe R, Komar M, Hohm A, Hegemann S, Lüke S (2012) Environment modelling for future ADAS functions. In: 19th ITS world congressGoogle Scholar
  19. Harris CG, Stephens M (1988) A combined corner and edge detector. In: 4th Alvey vision conference, 1988, pp 147–151Google Scholar
  20. Kalinke T, Tzokamkas C, von Seelen W (1998) A texture-based object detection and an adaptive model-based classification. In: IEEE intelligent vehicles symposium, pp 143–148Google Scholar
  21. Lategahn H, Stiller C (2014) Vision-only localization. IEEE Trans Intell Transp Syst 15(3):1246–1257CrossRefGoogle Scholar
  22. Lategahn H, Beck J, Kitt B, Stiller C (2013) How to learn an illumination robust image feature for place recognition. In: IEEE intelligent vehicles symposium, Gold CoastCrossRefGoogle Scholar
  23. Liebner M, Klanner F, Baumann M, Ruhhammer C, Stiller C (2013) Velocity-based driver intent inference at urban intersections in the presence of preceding vehicles. IEEE Intell Transp Syst Mag 5(2):10–21CrossRefGoogle Scholar
  24. Liu Y, Bougani CS, Cheung PYK (2007) Efficient mapping of a Kalman filter into an FPGA using Taylor expansion. In: International conference on field programmable logic and applications, pp 345–350Google Scholar
  25. Longuet-Higgins HC (1981) A computer algorithm for reconstructing a scene from two projections. Nature 293:133–135CrossRefGoogle Scholar
  26. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  27. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: International joint conference on artificial intelligence, Vancouver, pp 674–679Google Scholar
  28. Meinhold RJ, Singpurwalla ND (1983) Understanding the Kalman filter. Am Stat 37(2):123–127MathSciNetGoogle Scholar
  29. Mohan A, Papageorgiou C, Poggio T (2001) Example-based object detection in images by components. IEEE Trans Pattern Anal Mach Intell 23(4):349–361CrossRefGoogle Scholar
  30. Nistér D (2004) An efficient solution to the five-point relative pose problem. IEEE Trans Pattern Anal Mach Intell 26(6):756–777CrossRefGoogle Scholar
  31. Papageorgiou C, Poggio T (2000) A trainable system for object detection. Int J Comput Vis 38(1):15–33CrossRefMATHGoogle Scholar
  32. Saarinen J, Andreasson H, Stoyanov T, Luhtala JA, Lilienthal AJ (2013) Normal distributions transform occupancy maps: application to large-scale online 3d mapping. In: IEEE international conference on robotics and automationGoogle Scholar
  33. Shi J, Tomasi C (1994) Good features to track. In: IEEE conference on computer vision and pattern recognition, SeattleGoogle Scholar
  34. Stiller C, Konrad J (1999) Estimating motion in image sequences - a tutorial on modeling and computation in 2D motion. IEEE Signal Process Mag 7 and 9:70–91, 116–117Google Scholar
  35. Stiller C, Puente Leon F, Kruse M (2011) Information fusion for automotive applications - an overview. Inf Fusion 12(4):244–252CrossRefGoogle Scholar
  36. Sun Z, Bebis B, Miller R (2002) On-road vehicle detection using Gabor-filters and SVM. In: IEEE international conference on digital signal processing, Santori, GreeceGoogle Scholar
  37. Tola E, Lepetit V, Fua P (2010) DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans Pattern Anal Mach Intell 32(5):815–830CrossRefGoogle Scholar
  38. Triebel R, Pfaff P, Burgard W (2006) Multi-level surface maps for outdoor terrain mapping and loop closing. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2276–2282Google Scholar
  39. Trucco E, Verri A (1998) Introductory techniques for 3–D computer vision. Prentice Hall, New YorkGoogle Scholar
  40. Welch G, Bishop G (2006) An introduction to the Kalman filter. Technical report.˜welch/kalman/kalmanIntro.html
  41. Wojek C, Walk S, Roth S, Schindler K, Schiele B (2013) Monocular visual scene understanding: understanding multi-object traffic scenes. IEEE Trans Pattern Anal Mach Intell 35:882–897CrossRefGoogle Scholar
  42. Ziegler J, Bender P, Schreiber M, Lategahn H, Strauss T, Stiller C, Dang T, Franke U, Appenrodt N, Keller CG, Kaus E, Herrtwich RG, Rabe C, Pfeiffer D, Lindner F, Stein F, Erbs F, Enzweiler M, Knoppel C, Hipp J, Haueis M, Trepte M, Brenk C, Tamke A, Ghanaat M, Braun M, Joos A, Fritz H, Mock H, Hein M, Zeeb E (2014) Making Bertha drive - an autonomous journey on a historic route. IEEE Intell Transp Syst Mag 6(2):8–20CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christoph Stiller
    • 1
  • Alexander Bachmann
    • 2
  • Andreas Geiger
    • 3
  1. 1.Institut für Mess- und RegelungstechnikKarlsruher Institut für Technologie (KIT)KarlsruheGermany
  2. 2.ADC Automotive Distance Control Systems GmbHLindauGermany
  3. 3.MPI for Intelligent SystemsTübingenGermany

Personalised recommendations