Advertisement

The Bayesian Approach to Inverse Problems

  • Masoumeh Dashti
  • Andrew M. Stuart
Living reference work entry

Abstract

These lecture notes highlight the mathematical and computational structure relating to the formulation of, and development of algorithms for, the Bayesian approach to inverse problems in differential equations. This approach is fundamental in the quantification of uncertainty within applications involving the blending of mathematical models with data. The finite-dimensional situation is described first, along with some motivational examples. Then the development of probability measures on separable Banach space is undertaken, using a random series over an infinite set of functions to construct draws; these probability measures are used as priors in the Bayesian approach to inverse problems. Regularity of draws from the priors is studied in the natural Sobolev or Besov spaces implied by the choice of functions in the random series construction, and the Kolmogorov continuity theorem is used to extend regularity considerations to the space of Hölder continuous functions. Bayes’ theorem is derived in this prior setting, and here interpreted as finding conditions under which the posterior is absolutely continuous with respect to the prior, and determining a formula for the Radon-Nikodym derivative in terms of the likelihood of the data. Having established the form of the posterior, we then describe various properties common to it in the infinite-dimensional setting. These properties include well-posedness, approximation theory, and the existence of maximum a posteriori estimators. We then describe measure-preserving dynamics, again on the infinite-dimensional space, including Markov chain Monte Carlo and sequential Monte Carlo methods, and measure-preserving reversible stochastic differential equations. By formulating the theory and algorithms on the underlying infinite-dimensional space, we obtain a framework suitable for rigorous analysis of the accuracy of reconstructions, of computational complexity, as well as naturally constructing algorithms which perform well under mesh refinement, since they are inherently well defined in infinite dimensions.

Keywords

Inverse problems Bayesian inversion Tikhonov regularization and MAP estimators Markov chain Monte Carlo Sequential Monte Carlo Langevin stochastic partial differential equations 

Notes

Acknowledgements

The authors are indebted to Martin Hairer for help in the development of these notes, and in particular for considerable help in structuring the Appendix, for the proof of Theorem 28 (which is a slight generalization to Hilbert scales of Theorem 6.16 in [40]) and for the proof of Corollary 5 (which is a generalization of Corollary 3.22 in [40] to the non-Gaussian setting and to Hölder, rather than Lipschitz, functions {ψ k }). They are also grateful to Joris Bierkens, Patrick Conrad, Matthew Dunlop, Shiwei Lan, Yulong Lu, Daniel Sanz-Alonso, Claudia Schillings and Aretha Teckentrup for careful proof-reading of the notes and related comments. AMS is grateful for various hosts who gave him the opportunity to teach this material in short course form at TIFR-Bangalore (Amit Apte), Göttingen (Axel Munk), PKU-Beijing (Teijun Li), ETH-Zurich (Christoph Schwab) and Cambridge CCA (Arieh Iserles), a process which led to refinements of the material; the authors are also grateful to the students on those courses, who provided useful feedback. The authors would also like to thank Sergios Agapiou and Yuan-Xiang Zhang for help in the preparation of these lecture notes, including type-setting, proof-reading, providing the proof of Lemma 3 and delivering problems classes related to the short courses. AMS is also pleased to acknowledge the financial support of EPSRC, ERC and ONR over the last decade, while the research that underpins this work has been developed.

References

  1. 1.
    Adler, R.: The Geometry of Random Fields. SIAM, Philadelphia (1981)zbMATHGoogle Scholar
  2. 2.
    Adams, R.A., Fournier, J.J.: Sobolev Spaces. Pure and Applied Mathematics. Elsevier, Oxford (2003)zbMATHGoogle Scholar
  3. 3.
    Agapiou, S., Larsson, S., Stuart, A.M.: Posterior contraction rates for the Bayesian approach to linear ill-posed inverse problems. Stoch. Process. Appl. 123, 3828–3860 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Agapiou, S., Stuart, A.M., Zhang, Y.X.: Bayesian posterior consistency for linear severely ill-posed inverse problems. J. Inverse Ill-posed Probl. 22(3), 297–321 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.: A fast and scalable method for A-optimal design of experiments for infinite-dimensional Bayesian nonlinear inverse problems. SIAM J. Sci. Comput. 38(1), A243–A272 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Alexanderian, A., Gloor, P., Ghattas, O.: On Bayesian A- and D-optimal experimental designs in infinite dimensions. http://arxiv.org/abs/1408.6323 (2016)
  7. 7.
    Babuska, I., Tempone, R., Zouraris, G.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42, 800–825 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Banks, H.T., Kunisch, H.: Estimation Techniques for Distributed Parameter Systems. Birkhauser, Boston (1989)CrossRefzbMATHGoogle Scholar
  9. 9.
    Beskos, A., Pinski, F.J., Sanz-Serna, J.-M., Stuart, A.M.: Hybrid Monte-Carlo on Hilbert spaces. Stoch. Process. Appl. 121, 2201–2230 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Beskos, A., Jasra, A., Muzaffer, E.A., Stuart, A.M.: Sequential Monte Carlo methods for Bayesian elliptic inverse problems. Stat. Comput. (2015)zbMATHGoogle Scholar
  11. 11.
    Bernardo, J., Smith, A.: Bayesian Theory. Wiley, Chichester (1994)CrossRefzbMATHGoogle Scholar
  12. 12.
    Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)zbMATHGoogle Scholar
  13. 13.
    Bochner, S.: Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind. Fund. Math. 20, 262–276 (1933)zbMATHGoogle Scholar
  14. 14.
    Bogachev, V.I.: Gaussian Measures. Mathematical Surveys and Monographs, vol. 62. American Mathematical Society, Providence (1998)Google Scholar
  15. 15.
    Bogachev, V.I.: Measure Theory, vol. I, II. Springer, Berlin (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Bui-Thanh, T., Ghattas, O., Martin, J., Stadler, G.: A computational framework for infinite-dimensional Bayesian inverse problems. Part I: the linearized case, with application to global seismic inversion. SIAM J. Sci. Comput. 35(6), A2494–A2523 (2013)Google Scholar
  17. 17.
    Cotter, S., Dashti, M., Robinson, J., Stuart, A.: Bayesian inverse problems for functions and applications to fluid mechanics. Inverse Probl. 25. doi:10.1088/0266–5611/25/11/115008 (2009)Google Scholar
  18. 18.
    Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best n-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10, 615–646 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Cohen, A., DeVore, R., Schwab, Ch.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs. Anal. Appl. 9(1), 11–47 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Cotter, S., Dashti, M., Stuart, A.: Approximation of Bayesian inverse problems. SIAM J. Numer. Anal. 48, 322–345 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Cotter, S., Roberts, G., Stuart, A., White, D.: MCMC methods for functions: modifying old algorithms to make them faster. Stat. Sci. 28, 424–446 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Csiszar, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar
  23. 23.
    Dacorogna, B.: Introduction to the Calculus of Variations. Translated from the 1992 French original, 2nd edn. Imperial College Press, London (2009)Google Scholar
  24. 24.
    Dashti, M., Harris, S., Stuart, A.: Besov priors for Bayesian inverse problems. Inverse Probl. Imaging 6, 183–200 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Dashti, M., Stuart, A.: Uncertainty quantification and weak approximation of an elliptic inverse problem. SIAM J. Numer. Anal. 49, 2524–2542 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Del Moral, P.: Feynman-Kac Formulae. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  27. 27.
    Da Prato, G.: An introduction to infinite-dimensional analysis. Universitext. Springer, Berlin (2006). Revised and extended from the 2001 original by Da PratoGoogle Scholar
  28. 28.
    DaPrato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992)Google Scholar
  29. 29.
    DaPrato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  30. 30.
    Dashti, M., Law, K.J.H., Stuart, A.M., Voss, J.: MAP estimators and their consistency in Bayesian nonparametric inverse problems. Inverse Probl. 29, 095017 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Daubechies, I.: Ten lectures on wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)Google Scholar
  32. 32.
    Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht/Boston (1996)CrossRefzbMATHGoogle Scholar
  33. 33.
    Evans, L.: Partial Differential Equations. AMS, Providence (1998)zbMATHGoogle Scholar
  34. 34.
    Feldman, J.: Equivalence and perpendicularity of Gaussian processes. Pac. J. Math. 8, 699–708 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Fernique, X.: Intégrabilité des vecteurs Gaussiens. C. R. Acad. Sci. Paris Sér. A-B 270, A1698–A1699 (1970)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Franklin, J.: Well-posed stochastic extensions of ill-posed linear problems. J. Math. Anal. Appl. 31, 682–716 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Gardiner, C.W.: Handbook of stochastic methods. Springer, Berlin, 2nd edn. (1985). For Physics, Chemistry and the Natural SciencesGoogle Scholar
  38. 38.
    Gibbs, A., Su, F.: On choosing and bounding probability metrics. Int. Stat. Rev. 70, 419–435 (2002)CrossRefzbMATHGoogle Scholar
  39. 39.
    Graham, I.G., Kuo, F.Y., Nicholls, J.A., Scheichl, R., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo Finite Element methods for Elliptic PDEs with Log-normal Random Coefficients, Seminar for Applied Mathematics, ETH, SAM Report 2013–14 (2013)Google Scholar
  40. 40.
    Hairer, M.: Introduction to Stochastic PDEs. Lecture Notes http://arxiv.org/abs/0907.4178 (2009)
  41. 41.
    Hairer, M., Stuart, A.M., Voss, J.: Analysis of SPDEs arising in path sampling, part II: the nonlinear case. Ann. Appl. Probab. 17, 1657–1706 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Hairer, M., Stuart, A., Voss, J.: Sampling conditioned hypoelliptic diffusions. Ann. Appl. Probab. 21(2), 669–698 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Hairer, M., Stuart, A., Voss, J., Wiberg, P.: Analysis of SPDEs arising in path sampling. Part I: the Gaussian case. Comm. Math. Sci. 3, 587–603 (2005)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Hairer, M., Stuart, A., Vollmer, S.: Spectral gaps for a Metropolis-Hastings algorithm in infinite dimensions. Ann. Appl. Probab. 24(6), 2455–2490 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Hájek, Y.: On a property of normal distribution of any stochastic process. Czechoslov. Math. J. 8(83), 610–618 (1958)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Helin, T., Burger, M.: Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems. Inverse Probl. 31(8), 085009 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Hildebrandt, T.H.: Integration in abstract spaces. Bull. Am. Math. Soc. 59, 111–139 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Kahane, J.-P.: Some Random Series of Functions. Cambridge Studies in Advanced Mathematics, vol. 5. Cambridge University Press, Cambridge (1985)Google Scholar
  50. 50.
    Kantas, N., Beskos, A., Jasra, A.: Sequential Monte Carlo methods for high-dimensional inverse problems: a case study for the Navier-Stokes equations. arXiv preprint, arXiv:1307.6127Google Scholar
  51. 51.
    Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  52. 52.
    Kühn, T., Liese, F.: A short proof of the Hájek-Feldman theorem. Teor. Verojatnost. i Primenen. 23(2), 448–450 (1978)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Applied Mathematical Sciences, vol. 160. Springer, New York (2005)Google Scholar
  54. 54.
    Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Probability and its Applications. Springer, New York, (2002)CrossRefzbMATHGoogle Scholar
  55. 55.
    Knapik, B., van Der Vaart, A., van Zanten, J.: Bayesian inverse problems with Gaussian priors. Ann. Stat. 39(5), 2626–2657 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Knapik, B., van der Vaart, A., van Zanten, J.H.: Bayesian recovery of the initial condition for the heat equation Commun. Stat. Theory Methods 42, 1294–1313 (2013)CrossRefzbMATHGoogle Scholar
  57. 57.
    Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo methods for very high dimensional integration: the standard (weighted Hilbert space) setting and beyond. ANZIAM J. 53, 1–37 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic Partial Differential Equations with Random Coefficients. SIAM J. Numer. Anal. 50(6), 3351–3374 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Kuo, F.Y., Sloan, I.H.: Lifting the curse of dimensionality. Not. AMS 52(11), 1320–1328 (2005)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Kuo, F.Y., Sloan, I.H., Wasilikowski, G.W., Waterhouse, B.J.: Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands. J. Complex. 26, 135–160 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Lasanen, S.: Discretizations of generalized random variables with applications to inverse problems. Ann. Acad. Sci. Fenn. Math. Dissertation, University of Oulu, 130 (2002)Google Scholar
  62. 62.
    Lasanen, S.: Measurements and infinite-dimensional statistical inverse theory. PAMM 7, 1080101–1080102 (2007)CrossRefGoogle Scholar
  63. 63.
    Lasanen, S.: Non-Gaussian statistical inverse problems part II: posterior convergence for approximated unknowns. Inverse Probl. Imaging 6(2), 267 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Lasanen, S.: Non-Gaussian statistical inverse problems. Part I: posterior distributions. Inverse Probl. Imaging 6(2), 215–266 (2012)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Lasanen, S.: Non-Gaussian statistical inverse problems. Part II: posterior distributions. Inverse Probl. Imaging 6(2), 267–287 (2012)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Ledoux, M.: Isoperimetry and Gaussian analysis. In: Lectures on Probability Theory and Statistics (Saint-Flour, 1994). Lecture Notes in Mathematics, vol. 1648, pp. 165–294. Springer, Berlin (1996)Google Scholar
  67. 67.
    Lifshits, M.: Gaussian Random Functions. Mathematics and its Applications, vol. 322. Kluwer, Dordrecht (1995)Google Scholar
  68. 68.
    Lehtinen, M.S., Päivärinta, L., Somersalo, E.: Linear inverse problems for generalised random variables. Inverse Probl. 5(4), 599–612 (1989). http://stacks.iop.org/0266-5611/5/599 MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Lassas, M., Saksman, E., Siltanen, S.: Discretization-invariant Bayesian inversion and Besov space priors. Inverse Probl. Imaging 3, 87–122 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications, vol. 16. Birkhäuser Verlag, Basel (1995)Google Scholar
  71. 71.
    Mandelbaum, A.: Linear estimators and measurable linear transformations on a Hilbert space. Z. Wahrsch. Verw. Gebiete 65(3), 385–397 (1984). http://dx.doi.org/10.1007/BF00533743 MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Mattingly, J., Pillai, N., Stuart, A.: Diffusion limits of the random walk Metropolis algorithm in high dimensions. Ann. Appl. Probl. 22, 881–930 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Metropolis, N., Rosenbluth, R., Teller, M., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  74. 74.
    Meyer, Y.: Wavelets and operators. Translated from the 1990 French original by D.H. Salinger. Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992)Google Scholar
  75. 75.
    Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Communications and Control Engineering Series. Springer, London (1993)CrossRefzbMATHGoogle Scholar
  76. 76.
    Neal, R.: Regression and classification using Gaussian process priors. http://www.cs.toronto.edu/~radford/valencia.abstract.html (1998)
  77. 77.
    Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1994)zbMATHGoogle Scholar
  78. 78.
    Norris, J.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  79. 79.
    Oksendal, B.: Stochastic Differential Equations. An Introduction with Applications. Universitext, 6th edn. Springer, Berlin (2003)Google Scholar
  80. 80.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)CrossRefzbMATHGoogle Scholar
  81. 81.
    Petra, N., Martin, J., Stadler, G., Ghattas, O.: A computational framework for infinite-dimensional Bayesian inverse problems. Part II: stochastic Newton MCMC with application to ice sheet flow inverse problems. SIAM J. Sci. Comput. 36(4), A1525–A1555 (2014)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Pillai, N.S., Stuart, A.M., Thiery, A.H.: Noisy gradient flow from a random walk in Hilbert space. Stoch. PDEs: Anal. Comput. 2, 196–232 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Pinski, F., Stuart, A.: Transition paths in molecules at finite temperature. J. Chem. Phys. 132, 184104 (2010)CrossRefGoogle Scholar
  84. 84.
    Rebeschini, P., van Handel, R.: Can local particle filters beat the curse of dimensionality? Ann. Appl. Probab. 25(5), 2809–2866 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 2nd edn. Springer, Berlin (1994)Google Scholar
  86. 86.
    Richter, G.: An inverse problem for the steady state diffusion equation. SIAM J. Appl. Math. 41(2), 210–221 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    Robinson, J.C.: Infinite-Dimensional Dynamical Systems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  88. 88.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)zbMATHGoogle Scholar
  89. 89.
    Schillings, C., Schwab, C.: Sparse, adaptive Smolyak quadratures for Bayesian inverse problems. Inverse Probl. 29, 065011 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    Schwab, C., Stuart, A.: Sparse deterministic approximation of Bayesian inverse problems. Inverse Probl. 28, 045003 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  91. 91.
    Strauss, W.A.: Partial differential equations. An introduction, 2nd edn. Wiley, Chichester (2008)Google Scholar
  92. 92.
    Stuart, A.M.: Inverse problems: a Bayesian perspective. Acta Numer. 19, 451–559 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  93. 93.
    Stuart, A.M.: Uncertainty quantification in Bayesian inversion. ICM2014. Invited Lecture (2014)Google Scholar
  94. 94.
    Tierney, L.: A note on Metropolis-Hastings kernels for general state spaces. Ann. Appl. Probab. 8(1), 1–9 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  95. 95.
    Triebel, H.: Theory of function spaces. Mathematik und ihre Anwendungen in Physik und Technik [Mathematics and its Applications in Physics and Technology], vol. 38. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig (1983)Google Scholar
  96. 96.
    Triebel, H.: Theory of Function Spaces. II. Monographs in Mathematics, vol. 84. Birkhäuser Verlag, Basel (1992)Google Scholar
  97. 97.
    Triebel, H.: Theory of Function Spaces. III. Monographs in Mathematics, vol. 100. Birkhäuser Verlag, Basel (2006)Google Scholar
  98. 98.
    Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)Google Scholar
  99. 99.
    Vollmer, S.: Posterior consistency for Bayesian inverse problems through stability and regression results. Inverse Probl. 29, 125011 (2013)MathSciNetCrossRefGoogle Scholar
  100. 100.
    Yosida, K.: Functional Analysis. Classics in Mathematics. Springer, Berlin (1995). Reprint of the sixth (1980) edition.Google Scholar
  101. 101.
    Yin, G., Zhang, Q.: Continuous-Time Markov Chains and Applications. Applications of Mathematics (New York), vol. 37. Springer, New York (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of SussexBrightonUK
  2. 2.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations