Moment-Independent and Reliability-Based Importance Measures

  • Emanuele BorgonovoEmail author
  • Bertrand IoossEmail author
Living reference work entry


This chapter discusses the class of moment-independent importance measures. This class comprises density-based, cumulative distribution function-based, and value of information-based sensitivity measures. The chapter illustrates the definition and properties of these importance measures as they have been proposed in the literature, reviewing a common rationale that envelops them, as well as recent results that concern the general properties of global sensitivity measures. The final part of the chapter reviews importance measures developed in the context of reliability and structural reliability theories.


Computer experiment Global sensitivity analysis Moment-independent importance measures Reliability importance measures Structural reliability Value of information Common rationale Uncertainty 


  1. 1.
    Anderson, T.W., Darling, D.A.: Asymptotic theory of certain goodness-of-fit criteria based on stochastic processes. Ann. Math. Stat. 23, 193–212 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Auder, B., Iooss, B.: Global sensitivity analysis based on entropy. In: ESREL 2008 Conference, ESRA, Valencia, Sept 2008Google Scholar
  3. 3.
    Baucells, M., Borgonovo, E.: Invariant probabilistic sensitivity analysis. Manag. Sci. 59(11), 2536–2549 (2013).
  4. 4.
    Birnbaum, L.: On the importance of different elements in a multielement system. In: Krishnaiah, P.R. (ed.) Multivariate Analysis, vol. 2, pp. 1–15. Academic, New York (1969)Google Scholar
  5. 5.
    Borgonovo, E.: Measuring uncertainty importance: investigation and comparison of alternative approaches. Risk Anal. 26(5), 1349–1361 (2006)CrossRefGoogle Scholar
  6. 6.
    Borgonovo, E.: A new uncertainty importance measure. Reliab. Eng. Syst. Saf. 92(6), 771–784 (2007)CrossRefGoogle Scholar
  7. 7.
    Borgonovo, E.: Differential, criticality and Birnbaum importance measures: an application to basic event, groups and SSCs in event trees and binary decision diagrams. Reliab. Eng. Syst. Saf. 92(10), 1458–1467 (2007)CrossRefGoogle Scholar
  8. 8.
    Borgonovo, E.: The reliability importance of components and prime implicants in coherent and non-coherent systems including total-order interactions. Eur. J. Oper. Res. 204(3), 485–495 (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Borgonovo, E., Plischke, E.: Sensitivity analysis for operational research. Eur. J. Oper. Res., 3(1), 869–887 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Borgonovo, E., Castaings, W., Tarantola, S.: Moment independent uncertainty importance: new results and analytical test cases. Risk Anal. 31(3), 404–428 (2011)CrossRefGoogle Scholar
  11. 11.
    Borgonovo, E., Castaings, W., Tarantola, S.: Model emulation and moment-independent sensitivity analysis: an application to environmental modeling. Environ. Model. Softw. 34, 105–115 (2012)CrossRefGoogle Scholar
  12. 12.
    Borgonovo, E., Hazen, G., Plischke, E.: A common rationale for global sensitivity analysis. In: Steenbergen, R.D.M., Van Gelder, P., Miraglia, S., Vrouwenvelder, A.C.W.M.T. (eds.) Proceedings of the 2013 ESREL Conference, Amsterdam, pp. 3255–3260 (2013)Google Scholar
  13. 13.
    Borgonovo, E., Hazen, G., & Plischke, E. (2016). A Common Rationale for Global Sensitivity Measures and their Estimation. Risk Analysis, forthcoming, DOI: 10.1111/risa.12555, 1–24Google Scholar
  14. 14.
    Borgonovo, E., Tarantola, S., Plischke, E., Morris, M.: Transformation and invariance in the sensitivity analysis of computer experiments. J. R. Stat. Soc. Ser. B 76(5), 925–947 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Borgonovo, E., Hazen, G., Jose, V., Plischke, E., 2016: Value of Information, Scoring Rules and Global Sensitivity Analysis, work in progressGoogle Scholar
  16. 16.
    Caniou, Y., Sudret, B.: Distribution-based global sensitivity analysis using polynomial chaos expansions. Procedia – Social and Behavioral Sciences, pp. 7625–7626 (2010)Google Scholar
  17. 17.
    Caniou, Y., Sudret, B.: Distribution-based global sensitivity analysis in case of correlated input parameters using polynomial chaos expansions. In: 11th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP11), Zurich (2011)Google Scholar
  18. 18.
    Castaings, W., Borgonovo, E., Tarantola, S., Morris, M.D.: Sampling strategies in density-based sensitivity analysis. Environ. Model. Softw. 38, 13–26 (2012)CrossRefGoogle Scholar
  19. 19.
    Chandra, M., Singpurwalla, N.D., Stephens, M.A.: Kolmogorov statistics for tests of fit for the extreme value and Weibull distributions. J. Am. Stat. Assoc. 76(375), 729–731 (1981)Google Scholar
  20. 20.
    Critchfield, G.G., Willard, K.E.: Probabilistic analysis of decision trees using Monte Carlo simulation. Med. Decis. Mak. 6(2), 85–92 (1986)CrossRefGoogle Scholar
  21. 21.
    Crnkovic, C., Drachman, J.: Quality control. RISK 9(9), 139–143 (1996)Google Scholar
  22. 22.
    Csiszár, I.: Axiomatic characterizations of information measures. Entropy 10, 261–273 (2008)CrossRefzbMATHGoogle Scholar
  23. 23.
    Da Veiga, S.: Global sensitivity analysis with dependence measures. J. Stat. Comput. Simul. 85, 1283–1305 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    De Lozzo, M., Marrel, A.: New improvements in the use of dependence measures for sensitivity analysis and screening, pp. 1–21 (Dec 2014). arXiv:1412.1414v1Google Scholar
  25. 25.
    Felli, J., Hazen, G.: Sensitivity analysis and the expected value of perfect information. Med. Decis. Mak. 18, 95–109 (1998)CrossRefGoogle Scholar
  26. 26.
    Fort, J., Klein, T., Rachdi, N.: New sensitivity analysis subordinated to a contrast. Commun. Stat. Theory Methods (2014, in press)Google Scholar
  27. 27.
    Gamboa, F., Klein, T., Lagnoux, A.: Sensitivity analysis based on Cramer von Mises distance, pp. 1–20 (2015). arXiv:1506.04133 [math.PR]Google Scholar
  28. 28.
    Howard, R.A.: Decision analysis: applied decision theory. In: Proceedings of the Fourth International Conference on Operational Research. Wiley-Interscience, New York (1966)Google Scholar
  29. 29.
    Iman, R., Hora, S.: A robust measure of uncertainty importance for use in fault tree system analysis. Risk Anal. 10, 401–406 (1990)CrossRefGoogle Scholar
  30. 30.
    Krzykacz-Hausmann, B.: Epistemic sensitivity analysis based on the concept of entropy. In: SAMO 2001, Madrid, CIEMAT, pp. 31–35 (2001)Google Scholar
  31. 31.
    Kuo, W., Zhu, X.: Importance Measures in Reliability, Risk and Optimization. Wiley, Chichester (2012)CrossRefzbMATHGoogle Scholar
  32. 32.
    Le Gratiet, L., Cannamela, C., Iooss, B.: A Bayesian approach for global sensitivity analysis of (multifidelity) computer codes. SIAM/ASA J. Uncertain. Quantif. 2, 336–363 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Lemaire, M.: Structural Reliability. Wiley-ISTE, London/Hoboken (2009)CrossRefGoogle Scholar
  34. 34.
    Lemaitre, P., Sergienko, E., Arnaud, A., Bousquet, N., Gamboa, F., Iooss, B.: Density modification based reliability sensitivity analysis. J. Stat. Comput. Simul. 85, 1200–1223 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Liu, H., Chen, W., Sudjianto, A.: Relative entropy based method for probabilistic sensitivity analysis in engineering design. ASME J. Mech. Des. 128, 326–336 (2006)CrossRefGoogle Scholar
  36. 36.
    Luo, X., Lu, Z., Xu, X.: A fast computational method for moment-independent uncertainty importance measure. Comput. Phys. Commun. 185, 19–27 (2014)CrossRefGoogle Scholar
  37. 37.
    Mason, D.M., Shuenmeyer, J.H.: A modified Kolmogorov Smirnov test sensitive to tail alternatives. Ann. Stat. 11(3), 933–946 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Oakley, J.: Decision-theoretic sensitivity analysis for complex computer models. Technometrics 51(2), 121–129 (2009)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Park, C.K., Ahn, K.I.: A new approach for measuring uncertainty importance and distributional sensitivity in probabilistic safety assessment. Reliability Engineering & System Safety. 46, 253–261 (1994)CrossRefGoogle Scholar
  40. 40.
    Plischke, E., Borgonovo, E.: Probabilistic Sensitivity Measures from Empirical Cumulative Distribution Functions: A Horse Race of Methods, 2016, Work in Progress.Google Scholar
  41. 41.
    Plischke, E., Borgonovo, E., Smith, C.: Global sensitivity measures from given data. Eur. J. Oper. Res. 226(3), 536–550 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Pratt, J., Raiffa, H., Schlaifer, R.: Introduction to Statistical Decision Theory. MIT, Cambridge (1995)zbMATHGoogle Scholar
  43. 43.
    Saltelli, A.: Making best use of model valuations to compute sensitivity indices. Comput. Phys. Commun. 145, 280–297 (2002)CrossRefzbMATHGoogle Scholar
  44. 44.
    Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis – The Primer. Wiley, Chichester (2008)zbMATHGoogle Scholar
  45. 45.
    Scheffé, H.: A useful convergence theorem for probability distributions. Ann. Math. Stat. 18(3), 434–438 (1947)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Strong, M., Oakley, J.: An efficient method for computing partial expected value of perfect information for correlated inputs. Med. Decis. Mak. 33, 755–766 (2013)CrossRefGoogle Scholar
  47. 47.
    Strong, M., Oakley, J.E., Chilcott, J.: Managing structural uncertainty in health economic decision models: a discrepancy approach. J. R. Stat. Soc. Ser. C 61(1), 25–45 (2012)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Strong, M., Oakley, J., Brennan, A.: Estimating multiparameter partial expected value of perfect information from a probabilistic sensitivity analysis sample: a nonparametric regression approach. Med. Decis. Mak. 34, 311–326 (2014)CrossRefGoogle Scholar
  49. 49.
    Sudret, B.: Global sensitivity analysis using polynomial chaos expansion. Reliab. Eng. Syst. Saf. 93, 964–979 (2008)CrossRefGoogle Scholar
  50. 50.
    Xu, X., Lu, Z., Luo, X.: Stable approach based on asymptotic space integration for moment-independent uncertainty importance measure. Risk Anal. 34(2), 235–251 (2014)CrossRefGoogle Scholar
  51. 51.
    Zhang, L., Lu, Z., Cheng, L., Fan, C.: A new method for evaluating Borgonovo moment-independent importance measure with its application in an aircraft structure. Reliab. Eng. Syst. Saf. 132, 163–175 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Decision SciencesBocconi UniversityMilanItaly
  2. 2.Industrial Risk Management DepartmentEDF R&DChatouFrance
  3. 3.Institut de Mathématiques de ToulouseUniversité Paul SabatierToulouseFrance

Personalised recommendations