Encyclopedia of Bioastronautics

Living Edition
| Editors: Laurence R. Young, Jeffrey P. Sutton

Space Radiation Shielding

  • Cary ZeitlinEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-10152-1_28-1


Both short- and long-term health risks from exposure to galactic cosmic rays (GCRs) and solar energetic particles (SEPs) are potentially limiting factors in the human exploration of deep space. A significant portion of the risk is attributable to the presence of high-energy heavy ions in space, particles that do not exist on the surface of the Earth and which are known to cause biological damage disproportionate to the physical dose they impart. Large uncertainties remain in our knowledge of the biological effects of high-energy heavy ions, particularly at the low dose rates encountered in space (Cucinotta 2015).

In conventional radiation protection, three principles apply: (1) minimize the duration of the exposure; (2) maximize the distance from the source; (3) place shielding between personnel and the source whenever possible. In space, the first two principles cannot be readily applied, and the utility of shielding is severely limited by the high cost of launch and by the...

This is a preview of subscription content, log in to check access.


  1. Adams JH et al (2005) Revolutionary concepts of radiation shielding for human exploration of space. NASA TM 213688Google Scholar
  2. Agostinelli S et al (2003) GEANT4 – a simulation toolkit. Nucl Instr Meth A 506:250–303Google Scholar
  3. Baade W, Zwicky F (1934) On super-novae. Proc Natl Acad Sci 20(5):254–259Google Scholar
  4. Bamford RA et al (2014) An exploration of the effectiveness of artificial mini-magnetospheres as a potential solar storm shelter for long term human space missions. Acta Astronaut 105(2):385–394Google Scholar
  5. Barao F (2004) AMS – alpha magnetic spectrometer on the international space station. Nucl Instrum Methods Phys Res, Sect A 535(1):134–138Google Scholar
  6. Berger MJ (1992) ESTAR, PSTAR and ASTAR: computer codes for calculating stopping power and range tables for electrons, protons and helium ions. National Institute of Standards and Technology report, NISTIR 4999Google Scholar
  7. Bethe H (1930) Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Ann Phys 397(3):325–400zbMATHGoogle Scholar
  8. Blasi P (2013) The origin of galactic cosmic rays. Astron Astrophys Rev 21(1):1–73MathSciNetGoogle Scholar
  9. Blau B et al (2002) The superconducting magnet system of AMS-02-a particle physics detector to be operated on the international space station. Appl Supercond IEEE Trans 12(1):349–352Google Scholar
  10. Bradt HL, Peters B (1950) The heavy nuclei of the primary cosmic radiation. Phys Rev 77(1):54Google Scholar
  11. Brenner DJ et al (2003) Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci 100(24):13761–13766Google Scholar
  12. Calvelli V, Farinon S, Burger, WJ, Battiston R (2014) Space radiation superconducting shields. In Journal of Physics: Conference Series 507(3), p. 032033). IOP PublishingGoogle Scholar
  13. Charbonneau P (2014) Solar dynamo theory. Annu Rev Astron Astrophys 52:251–290Google Scholar
  14. Cliver EW, Dietrich WF (2013) The 1859 space weather event revisited: limits of extreme activity. J Space Weather Space Clim 3:A31Google Scholar
  15. Cucinotta (2015) A new approach to reduce uncertainties in space radiation cancer risk predictions. PLoS One.  https://doi.org/10.1371/journal.pone.0120717Google Scholar
  16. Cucinotta FA et al (1991) Biological effectiveness of high-energy protons: target fragmentation. Radiat Res 127(2):130–137Google Scholar
  17. Cucinotta FA, Kim MHY, Ren L (2006) Evaluating shielding effectiveness for reducing space radiation cancer risks. Radiat Meas 41(9):1173–1185Google Scholar
  18. Cucinotta FA, Kim MHY, Chappell L (2012) Space radiation cancer risk projections and uncertainties- 2012. NASA TP 2013-217375Google Scholar
  19. Del Rosso A (2015) A superconducting shield to protect astronauts. CERN Bull. Issue no 32–33/2015, 3 August 2015Google Scholar
  20. Detmold W (2015) Nuclear physics from lattice QCD. Lattice QCD for nuclear physics. Springer International Publishing, Berlin. pp 153–194Google Scholar
  21. Durante M, Cucinotta FA (2011) Physical basis of radiation protection in space travel. Rev Mod Phys 83(4):1245Google Scholar
  22. Hathaway DH (2010) The solar cycle. Living Rev Solar Phys 7:1. http://www.livingreviews.org/lrsp-2010-1. Cited on 15 Aug 2015Google Scholar
  23. Hess VF (1913) Über den Ursprung der durchdringenden Strahlung. Z Phys 14:610Google Scholar
  24. International Commission on Radiological Protection (1991) ICRP publication 60: 1990 recommendations of the international commission on radiological protection. no. 60. Elsevier Health Sciences, OxfordGoogle Scholar
  25. Landis GA (1991) Magnetic radiation shielding- an idea whose time has returned? In: Space manufacturing 8 – Energy and materials from space; Proceedings of the 10th Princeton/AIAA/SSI Conference, Princeton, NJ, (A92-17751 05-12). Washington, DC, American Institute of Aeronautics and Astronautics, p. 383–386.Google Scholar
  26. Levy RH (1961) Radiation shielding of space vehicles by means of superconducting coils. Structure 1:2Google Scholar
  27. Matthiä D et al (2013) A ready-to-use galactic cosmic ray model. Adv Space Res 51(3):329–338Google Scholar
  28. Mewaldt RA et al. (2005) Solar-particle energy spectra during the large events of October-November 2003 and January 2005. International cosmic ray conference, vol. 1Google Scholar
  29. Moyers MF, Saganti PB, Nelson GA (2006) EVA space suit proton and electron threshold energy measurements by XCT and range shifting. Radiat Meas 41(9):1216–1226Google Scholar
  30. Niita K et al (2006) PHITS – a particle and heavy ion transport code system. Radiat Meas 41(9):1080–1090Google Scholar
  31. Nymmik RA, Panasyuk MI, Suslov AA (1996) Galactic cosmic ray flux simulation and prediction. Adv Space Res 17(2):19–30Google Scholar
  32. O’Neill PM, Golge S, Slaba, TC (2015) Badhwar – O’Neill 2014 galactic cosmic ray flux model. NASA/TP 218569Google Scholar
  33. Oh JH et al (2015) Study on radiation production in the charge stripping section of the RISP linear accelerator. J Korean Phys Soc 66(3):432–438Google Scholar
  34. Olive KA et al (Particle Data Group) (2014) Review of particle physics. Chin Phys C 38:090001Google Scholar
  35. Paganetti H (2002) Nuclear interactions in proton therapy: dose and relative biological effect distributions originating from primary and secondary particles. Phys Med Biol 47(5):747Google Scholar
  36. Parker EN (2006) Shielding space explorers from cosmic rays. Space Weather 3:8Google Scholar
  37. Reames D (1999) Solar energetic particles: is there time to hide? Radiat Meas 30(3):297–308Google Scholar
  38. Reitz G et al (2005) Space radiation measurements on-board ISS – the DOSMAP experiment. Radiat Prot Dosim 116(1–4):374–379Google Scholar
  39. Ronningen RM, Remec I, Heilbronn LH (2013) Benchmarking heavy ion transport codes FLUKA, HETC-HEDS MARS15, MCNPX, and PHITS. No. DOE/ER/41548. Michigan State University, East Lansing, MI (US)Google Scholar
  40. Schwabe H (1844) Sonnen-Beobachtungen im Jahre 1843. Astron Nachr 21(495):233–236Google Scholar
  41. Shinn JL, Wilson JW (1992) An efficient heavy ion transport code: HZETRN. NASA TP-3147Google Scholar
  42. Sihver L et al (2007) Recent developments and benchmarking of the PHITS code. Adv Space Res 40(9):1320–1331Google Scholar
  43. Singleterry RC et al (2011) OLTARIS: on-line tool for the assessment of radiation in space. Acta Astronaut 68(7):1086–1097Google Scholar
  44. Slaba TC, Blattnig SR, Badavi FF (2010) Faster and more accurate transport procedures for HZETRN. J Comput Phys 229(24):9397–9417zbMATHGoogle Scholar
  45. Smart DF, Shea MA, McCracken KG (2006) The carrington event: possible solar proton intensity – time profile. Adv Space Res 38(2):215–225Google Scholar
  46. Spence HE et al (2010) CRaTER: the cosmic ray telescope for the effects of radiation experiment on the lunar reconnaissance orbiter mission. Space Sci Rev 150(1–4):243–284Google Scholar
  47. Spillantini P et al (2007) Shielding from cosmic radiation for interplanetary missions: active and passive methods. Radiat Meas 42(1):14–23Google Scholar
  48. Stephens DL, Townsend LW, Hoff JL (2005) Interplanetary crew dose estimates for worst case solar particle events based on historical data for the carrington flare of 1859. Acta Astronaut 56(9):969–974Google Scholar
  49. Stiles LA et al (2013) Electrostatically inflated gossamer space structure voltage requirements due to orbital perturbations. Acta Astronaut 84:109–121Google Scholar
  50. Stone EC et al (2013) Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science 341(6142):150–153Google Scholar
  51. Townsend LW (2005) Critical analysis of active shielding methods for space radiation protection. Aerospace conference, 2005 IEEEGoogle Scholar
  52. Townsend LW, and Wilson JW (1986) Energy-dependent parameterization of heavy-ion absorption cross sections. Radiation research 106(3):283–287Google Scholar
  53. Townsend LW et al (2006) The carrington event: possible doses to crews in space from a comparable event. Adv Space Res 38(2):226–231Google Scholar
  54. Towsend LW (1984) Galactic heavy-ion shielding using electrostatic fields. NASA Technical Memorandum 86265Google Scholar
  55. Tripathi RK, Wilson JW, Youngquist RC (2008) Electrostatic space radiation shielding. Adv Space Res 42(6):1043–1049Google Scholar
  56. Tylka AJ, Dietrich WF (1999) IMP-8 observations of the spectra, composition, and variability of solar heavy ions at high energies relevant to manned space missions. Radiat Meas 30(3):345–359Google Scholar
  57. Tylka AJ, Dietrich WF (2009) A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events. In: Proceedings of the 31st ICRC, Lodz, pp 7–15Google Scholar
  58. Vuolo M et al (2015) Monte Carlo simulations for the space radiation superconducting shield project (SR2S). Life Sci Space Res 8:22–29Google Scholar
  59. Westover SC et al. (2014) Magnet architectures and active radiation shielding study (MAARS), final report for NASA innovative advanced concepts phase I. NASA TP-2014-217390Google Scholar
  60. Wilson JW et al (1995) Issues in space radiation protection: galactic cosmic rays. Health Phys 68(1):50–58Google Scholar
  61. Wolff EW et al (2012) The carrington event not observed in most ice core nitrate records. Geophys Res Lett 39(8):L08503Google Scholar
  62. Zeitlin C, Heilbronn L, Miller J (1998) Detailed characterization of the 1087 MeV/nucleon iron-56 beam used for radiobiology at the alternating gradient synchrotron. Radiation research 149(6):560–569Google Scholar
  63. Zeitlin C (2012) Physical interactions of charged particles for radiotherapy and space applications. Health Phys 103(5):540–546Google Scholar
  64. Zeitlin C et al (2006) Measurements of materials shielding properties with 1 GeV/nuc 56Fe. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 252(2):308–318Google Scholar
  65. Zeitlin C et al (2013a) Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 340(6136):1080–1084Google Scholar
  66. Zeitlin C et al (2013b) Measurements of galactic cosmic ray shielding with the CRaTER instrument. Space Weather 11(5):284–296Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Leidos Innovations CorporationHoustonUSA

Section editors and affiliations

  • Kathryn D. Held
    • 1
  1. 1.Radiation OncologyMassachusetts General Hospital/Harvard Medical SchoolBostonUSA