Encyclopedia of Bioastronautics

Living Edition
| Editors: Laurence R. Young, Jeffrey P. Sutton

Reduced Gravity by Lower Body Positive Pressure

  • Lonnie G. PetersenEmail author
  • Kiyotaka Kamibayashi
  • Yoshinobu Ohira
  • Alan R. Hargens
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-10152-1_139-1


An upright lower body positive pressure (LBPP) device is an airtight chamber encompassing legs and pelvic area; as pressure in the chamber is increased, the person is lifted, thereby reducing bodyweight at the level of the feet (Fig. 1).


LBPP Reduced gravity Fractional gravity Microgravity Exercise Bed rest Rehabilitation Space medicine 
This is a preview of subscription content, log in to check access.


  1. Boda WL, Watenpaugh DE, Ballard RE, Hargens AR (2000) Supine lower body negative pressure exercise simulates metabolic and kinetic features of upright exercise. J Appl Physiol 89:649–654CrossRefGoogle Scholar
  2. Clément G (2005) Fundamentals of space medicine. Springer, New YorkCrossRefGoogle Scholar
  3. Cutuk A, Groppo ER, Quigley EJ, White KW, Pedowitz RA, Hargens AR (2006) Ambulation in simulated fractional gravity using lower body positive pressure: cardiovascular safety and gait analyses. J Appl Physiol 101:771–777CrossRefGoogle Scholar
  4. Eastlack RK, Hargens AR, Groppo ER, Steinbach GC, White KK, Pedowitz RA (2005) Lower body positive-pressure exercise after knee surgery. Clin Orthopaed Relat Res 431:213–219CrossRefGoogle Scholar
  5. Hanson AM, Gilkey KM, Perusek GP, Thorndike DA, Kutnick GA, Grodsinsky CM, Rice AJ, Cavanagh PR (2011) Miniaturized sensors to monitor simulated lunar locomotion. Aviat Space Environ Med 82:128–132CrossRefGoogle Scholar
  6. Ishii K, Oba T, Kikuchi Y, Hamaguchi K (2017) Effects of lower-body positive pressure treadmill on oxygen uptake using multiple regression analysis. 5th National Strength and Conditioning Association, Tokyo, January 27–29, 2017Google Scholar
  7. Jost PD (2008) Simulating human space physiology with bed rest. Hippokratia 12(Suppl 1):37–40Google Scholar
  8. Kamibayashi K, Yoshida S, Wakahara T, Ishii K, Ohira Y (2016) Effect of body weight support on muscle activities during walking and running using a lower body positive pressure treadmill in healthy adults. XX1 ISEK Congress, Full abstract booklet, pp 333–334Google Scholar
  9. Macias BR, Cao P, Watenpaugh DE, Hargens AR (2007a) LBNP treadmill exercise maintains spine function and muscle strength in identical twins during 28-day simulated microgravity. J Appl Physiol 102:2274–2278CrossRefGoogle Scholar
  10. Macias BR, Groppo ER, Bawa M, Tran Cao HS, Lee B, Pedowitz RA, Hargens AR (2007b) Lower body negative pressure treadmill exercise is more comfortable and produces similar physiological responses as weighted vest exercise. Int J Sports Med 28:501–505CrossRefGoogle Scholar
  11. Nicogossian AE, Parker JFJ (1982) Space physiology and medicine (NASA SP-447). NASA, Washington, DCGoogle Scholar
  12. Norcross JR, Lee LR, Clowers KG, Morency RM, Desantis L, De Witt JK, Jones JA, Vos JR, Gernhardt ML (2009) Feasibility of performing a suited 10-km ambulation on the Moon – final report of the EVA Walkback Test (EWT). NASA/TP–2009–214796. National Aeronautics and Space Administration (NASA)Google Scholar
  13. Ohira M, Hanada H, Kawano F, Ishihara A, Nonaka I, Ohira Y (2002) Regulation of the properties of rat hindlimb muscles following gravitational unloading. Jpn J Physiol 52:235–245CrossRefGoogle Scholar
  14. Pavy-Le Traon A, Allevard AM, Fortrat JO, Vasseur P, Gauquelin G, Guell A, Bes A, Gharib C (1997) Cardiovascular and hormonal changes induced by a simulation of a lunar mission. Aviat Space Environ Med 68:829–837Google Scholar
  15. Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101:143–194CrossRefGoogle Scholar
  16. Petersen LG, Carlsen JF, Nielsen MB, Damgaard M, Secher NH (2014) The hydrostatic pressure indifference point underestimates orthostatic redistribution of blood in humans. J Appl Physiol 116:730–735CrossRefGoogle Scholar
  17. Petersen LG, Hargens A, Bird E, Ashari N, Saalfeld J, Petersen JCG (2019) Mobile lower body negative pressure suit as an integrative countermeasure for spaceflight. Aerosp Med Hum Perform 90(12):993–999CrossRefGoogle Scholar
  18. Ruckstuhl H, Schlabs T, Rosales-Velderrain A, Hargens AR (2010) Oxygen consumption during walking and running under fractional weight bearing conditions. Aviat Space Environ Med 81:550–554CrossRefGoogle Scholar
  19. Schlabs T, Rosales-Velderrain A, Ruckstuhl H, Stahn AC, Hargens AR (2013) Comparison of cardiovascular and biomechanical parameters of supine lower body negative pressure and upright lower body positive pressure to simulate activity in 1/6 G and 3/8 G. J Appl Physiol 115:275–284CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lonnie G. Petersen
    • 1
    Email author
  • Kiyotaka Kamibayashi
    • 2
    • 3
  • Yoshinobu Ohira
    • 2
    • 3
  • Alan R. Hargens
    • 1
    • 3
  1. 1.Department of RadiologyUniversity of California, San DiegoLa JollaUSA
  2. 2.Faculty and Graduate School of Health and Sports ScienceDoshisha UniversityKyotanabe CityJapan
  3. 3.Research Center for Space and Medical SciencesDoshisha UniversityKyotanabe CityJapan

Section editors and affiliations

  • Inessa Kozlovskaya
    • 1
  1. 1.Department of Sensory Motor Physiology and CountermeasuresInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia