Derivation of Equations for Continuum Mechanics and Thermodynamics of Fluids

  • Josef Málek
  • Vít Průša
Living reference work entry


The chapter starts with overview of the derivation of the balance equations for mass, momentum, angular momentum, and total energy, which is followed by a detailed discussion of the concept of entropy and entropy production. While the balance laws are universal for any continuous medium, the particular behavior of the material of interest must be described by an extra set of material-specific equations. These equations relating, for example, the Cauchy stress tensor and the kinematical quantities are called the constitutive relations. The core part of the chapter is devoted to the presentation of a modern thermodynamically based phenomenological theory of constitutive relations. The key feature of the theory is that the constitutive relations stem from the choice of two scalar quantities, the internal energy and the entropy production. This is tantamount to the proposition that the material behavior is fully characterized by the way it stores the energy and produces the entropy. The general theory is documented by several examples of increasing complexity. It is shown how to derive the constitutive relations for compressible and incompressible viscous heat-conducting fluids (Navier–Stokes–Fourier fluid), Korteweg fluids, and compressible and incompressible heat-conducting viscoelastic fluids (Oldroyd-B and Maxwell fluid).


Continuum mechanics, Constitutive relations, Thermodynamics 


  1. 1.
    H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier, Amsterdam, 1989)zbMATHGoogle Scholar
  2. 2.
    C. Barus, Isotherms, isopiestics and isometrics relative to viscosity. Am. J. Sci. 45, 87–96 (1893)CrossRefGoogle Scholar
  3. 3.
    C.E. Bingham, Fluidity and Plasticity (McGraw–Hill, New York, 1922)Google Scholar
  4. 4.
    R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids. Kinetic Theory, vol. 2, 2nd edn. (Wiley, Brisbane/Toronto/New York, 1987)Google Scholar
  5. 5.
    H. Blatter, Velocity and stress-fields in grounded glaciers – a simple algorithm for including deviatoric stress gradients. J. Glaciol. 41(138), 333–344 (1995)CrossRefGoogle Scholar
  6. 6.
    P.W. Bridgman, The effect of pressure on the viscosity of forty-four pure liquids. Proc. Am. Acad. Art. Sci. 61(3/12), 57–99 (1926)CrossRefGoogle Scholar
  7. 7.
    P.W. Bridgman, The Physics of High Pressure (Macmillan, New York, 1931)Google Scholar
  8. 8.
    M. Bulíček, E. Feireisl, J. Málek, A Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients. Nonlinear Anal. Real. World Appl. 10(2), 992–1015 (2009a). doi:10.1016/j.nonrwa.2007.11.018MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    M. Bulíček, J. Málek, K.R. Rajagopal, Mathematical analysis of unsteady flows of fluids with pressure, shear-rate, and temperature dependent material moduli that slip at solid boundaries. SIAM J. Math. Anal. 41(2), 665–707 (2009b). doi:10.1137/07069540XMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. Bulíček, P. Gwiazda, J. Málek, K.R. Rajagopal, A. Świerczewska-Gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph, in Mathematical Aspects of Fluid Mechanics. London Mathematical Society Lecture Note Series, vol. 402 (Cambridge University Press, Cambridge, 2012), pp. 23–51Google Scholar
  11. 11.
    M. Bulíček, J. Málek, On unsteady internal fows of Bingham fluids subject to threshold slip, in Recent Developments of Mathematical Fluid Mechanics, ed. by H. Amann, Y. Giga, H. Okamoto, H. Kozono, M. Yamazaki (Birkhäuser, 2015), pp. 135–156.Google Scholar
  12. 12.
    M. Bulíček, P. Gwiazda, J. Málek, A. Świerczewska-Gwiazda, On steady flows of incompressible fluids with implicit power-law-like rheology. Adv. Calc. Var. 2(2), 109–136 (2009). doi:10.1515/ACV.2009.006MathSciNetzbMATHGoogle Scholar
  13. 13.
    M. Bulíček, P. Gwiazda, J. Málek, A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44(4), 2756–2801 (2012). doi:10.1137/110830289MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    J.M. Burgers, Mechanical considerations – model systems – phenomenological theories of relaxation and viscosity (chap 1), in First Report on Viscosity and Plasticity (Nordemann Publishing, New York, 1939), pp. 5–67Google Scholar
  15. 15.
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, revised edn. (Wiley, New York, 1985)zbMATHGoogle Scholar
  16. 16.
    P.J. Carreau, Rheological equations from molecular network theories. J. Rheol. 16(1), 99–127 (1972). doi:10.1122/1.549276Google Scholar
  17. 17.
    R. Clausius, On the nature of the motion which we call heat. Philos. Mag. 14(91), 108–127 (1857). doi:10.1080/14786445708642360Google Scholar
  18. 18.
    R. Clausius, The Mechanical Theory of Heat (MacMillan, London, 1879)zbMATHGoogle Scholar
  19. 19.
    B.D. Coleman, Thermodynamics of materials with memory. Arch. Ration. Mech. Anal. 17, 1–46 (1964). doi:10.1007/BF00283864MathSciNetGoogle Scholar
  20. 20.
    B.D. Coleman, H. Markovitz, W. Noll, Viscometric Flows of Non-newtonian Fluids. Theory and Experiment (Springer, Berlin, 1966)Google Scholar
  21. 21.
    M.M. Cross, Rheology of non-newtonian fluids: a new flow equation for pseudoplastic systems. J. Colloid Sci. 20(5), 417–437 (1965). doi:10.1016/0095-8522(65)90022-XCrossRefGoogle Scholar
  22. 22.
    J.M. Dealy, On the definition of pressure in rheology. Rheol. Bull. 77(1), 10–14 (2008)Google Scholar
  23. 23.
    T. Divoux, M.A. Fardin, S. Manneville, S. Lerouge, Shear banding of complex fluids. Ann. Rev. Fluid Mech. 48(1), 81–103 (2016). doi:10.1146/annurev-fluid-122414-034416CrossRefzbMATHGoogle Scholar
  24. 24.
    A.L. Dorfmann, R.W. Ogden, Nonlinear Theory of Electroelastic and Magnetoelastic Interactions (Springer, 2014). doi:10.1007/978-1-4614-9596-3CrossRefzbMATHGoogle Scholar
  25. 25.
    G. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics (Springer, Berlin, 1976; translated from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften), p. 219Google Scholar
  26. 26.
    H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4(4), 283–291 (1936). doi:10.1063/1.1749836CrossRefGoogle Scholar
  27. 27.
    E. Feireisl, Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and its Applications, vol. 26 (Oxford University Press, Oxford, 2004)Google Scholar
  28. 28.
    E. Feireisl, J. Málek, On the Navier-Stokes equations with temperature-dependent transport coefficients. Differ. Equ. Nonlinear Mech. Art. ID 90,616, 14 (2006, electronic)Google Scholar
  29. 29.
    S. Frei, T. Richter, T. Wick, Eulerian techniques for fluid-structure interactions: part I – modeling and simulation, in Numerical Mathematics and Advanced Applications – ENUMATH 2013, ed. by A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso. Lecture Notes in Computational Science and Engineering, vol. 103 (Springer International Publishing, Cham, 2015), pp. 745–753. doi:10.1007/978-3-319-10705-9_74Google Scholar
  30. 30.
    S. Frei, T. Richter, T. Wick, Eulerian techniques for fluid-structure interactions: part II – applications, in Numerical Mathematics and Advanced Applications – ENUMATH 2013, ed. by A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso. Lecture Notes in Computational Science and Engineering, vol. 103 (Springer International Publishing, Cham, 2015), pp. 755–762. doi:10.1007/978-3-319-10705-9_75Google Scholar
  31. 31.
    H. Giesekus, A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newton Fluid Mech. 11(1–2), 69–109 (1982). doi:10.1016/0377-0257(82)85016-7CrossRefzbMATHGoogle Scholar
  32. 32.
    P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley-Interscience, London, 1971)zbMATHGoogle Scholar
  33. 33.
    J.W. Glen, The creep of polycrystalline ice. Proc. R. Soc. A-Math. Phys. Eng. Sci. 228(1175), 519–538 (1955). doi:10.1098/rspa.1955.0066CrossRefGoogle Scholar
  34. 34.
    S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics. Series in Physics (North-Holland, Amsterdam, 1962)Google Scholar
  35. 35.
    M.E. Gurtin, E. Fried, L. Anand, The Mechanics and Thermodynamics of Continua (Cambridge University Press, Cambridge, 2010)CrossRefGoogle Scholar
  36. 36.
    S.G. Hatzikiriakos, Wall slip of molten polymers. Prog. Polym. Sci. 37(4), 624–643 (2012). doi:10.1016/j.progpolymsci.2011.09.004CrossRefGoogle Scholar
  37. 37.
    M. Heida, On the derivation of thermodynamically consistent boundary conditions for the Cahn–Hilliard–Navier–Stokes system. Int. J. Eng. Sci. 62(0), 126–156 (2013). doi:10.1016/j.ijengsci.2012.09.005MathSciNetCrossRefGoogle Scholar
  38. 38.
    M. Heida, J. Málek, On compressible Korteweg fluid-like materials. Int. J. Eng. Sci. 48(11), 1313–1324 (2010). doi:10.1016/j.ijengsci.2010.06.031MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    W.H. Herschel, R. Bulkley, Konsistenzmessungen von Gummi-Benzollösungen. Colloid Polym. Sci. 39(4), 291–300 (1926). doi:10.1007/BF01432034Google Scholar
  40. 40.
    C. Horgan, J. Murphy, Constitutive models for almost incompressible isotropic elastic rubber-like materials. J. Elast. 87, 133–146 (2007). doi:10.1007/s10659-007-9100-xMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    C.O. Horgan, G. Saccomandi, Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility. J. Elast. 77(2), 123–138 (2004). doi:10.1007/s10659-005-4408-xMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    J. Hron, K.R. Rajagopal, K. Tůma, Flow of a Burgers fluid due to time varying loads on deforming boundaries. J. Non-Newton Fluid Mech. 210, 66–77 (2014). doi:10.1016/j.jnnfm.2014.05.005CrossRefGoogle Scholar
  43. 43.
    R.R. Huilgol, On the definition of pressure in rheology. Rheol. Bull. 78(2), 12–15 (2009)Google Scholar
  44. 44.
    J.D. Humphrey, K.R. Rajagopal, A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(3), 407–430 (2002). doi:10.1142/S0218202502001714MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    A. Janečka, V. Průša, Perspectives on using implicit type constitutive relations in the modelling of the behaviour of non-newtonian fluids. AIP Conf. Proc. 1662, 020003 (2015). doi:10.1063/1.4918873CrossRefGoogle Scholar
  46. 46.
    J.P. Joule, On the existence of an equivalent relation between heat and the ordinary forms of mechanical power. Philos. Mag. Ser. 3 27(179), 205–207 (1845). doi:10.1080/14786444508645256Google Scholar
  47. 47.
    J.P. Joule, On the mechanical equivalent of heat. Philos. Trans. R. Soc. Lond. 140, 61–82 (1850)CrossRefGoogle Scholar
  48. 48.
    S.i. Karato, P. Wu, Rheology of the upper mantle: a synthesis. Science 260(5109), 771–778 (1993). doi:10.1126/science.260.5109.771Google Scholar
  49. 49.
    S. Karra, K.R. Rajagopal, Development of three dimensional constitutive theories based on lower dimensional experimental data. Appl. Mat. 54(2), 147–176 (2009a). doi:10.1007/s10492-009-0010-zMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    S. Karra, K.R. Rajagopal, A thermodynamic framework to develop rate-type models for fluids without instantaneous elasticity. Acta Mech. 205(1–4), 105–119 (2009b). doi:10.1007/s00707-009-0167-2CrossRefzbMATHGoogle Scholar
  51. 51.
    D.J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothese d’une variation continue de la densité. Archives Néerlandaises des Sciences exactes et naturelles 6(1), 6 (1901)Google Scholar
  52. 52.
    R.G. Larson, Constitutive Equations for Polymer Melts and Solutions. Butterworths Series in Chemical Engineering (Butterworth-Heinemann, 1988). doi:10.1016/B978-0-409-90119-1.50001-4Google Scholar
  53. 53.
    C. Le Roux, K.R. Rajagopal, Shear flows of a new class of power-law fluids. Appl. Math. 58(2), 153–177 (2013). doi:10.1007/s10492-013-0008-4MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    J. Málek, K.R. Rajagopal, Mathematical issues concerning the Navier–Stokes equations and some of its generalizations, in Handbook of Differential Equations: Evolutionary Equations, ed. by C.M. Dafermos, E. Feireisl, vol. 2, chap 5 (Elsevier, Amsterdam, 2005), pp. 371–459Google Scholar
  55. 55.
    J. Málek, K.R. Rajagopal, On the modeling of inhomogeneous incompressible fluid-like bodies. Mech. Mater. 38(3), 233–242 (2006). doi:10.1016/j.mechmat.2005.05.020CrossRefGoogle Scholar
  56. 56.
    J. Málek, K.R. Rajagopal, Mathematical properties of the solutions to the equations governing the flow of fluids with pressure and shear rate dependent viscosities, in Handbook of Mathematical Fluid Dynamics, vol. 4, ed. by S. Friedlander, D. Serre (Elsevier, Amsterdam, 2007), pp. 407–444CrossRefGoogle Scholar
  57. 57.
    J. Málek, V. Průša, K.R. Rajagopal, Generalizations of the Navier–Stokes fluid from a new perspective. Int. J. Eng. Sci. 48(12), 1907–1924 (2010). doi:10.1016/j.ijengsci.2010.06.013MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    J. Málek, K.R. Rajagopal, K. Tůma, On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis. Int. J. Non-Linear Mech. 76, 42–47 (2015a). doi:10.1016/j.ijnonlinmec.2015.03.009CrossRefGoogle Scholar
  59. 59.
    J. Málek, K.R. Rajagopal, K. Tůma, A thermodynamically compatible model for describing the response of asphalt binders. Int. J. Pavement Eng. 16(4), 297–314 (2015b). doi:10.1080/10298436.2014.942860CrossRefGoogle Scholar
  60. 60.
    A.Y. Malkin, A.I. Isayev, Rheology: Concepts, Methods and Applications, 2nd edn. (ChemTec Publishing, Toronto, 2012)Google Scholar
  61. 61.
    S. Matsuhisa, R.B. Bird, Analytical and numerical solutions for laminar flow of the non-Newtonian Ellis fluid. AIChE J. 11(4), 588–595 (1965). doi:10.1002/aic.690110407CrossRefGoogle Scholar
  62. 62.
    I. Müller, Thermodynamics. Interaction of Mechanics and Mathematics (Pitman Publishing Limited, London, 1985)Google Scholar
  63. 63.
    C.L.M.H. Navier, Mémoire sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Paris 6, 389–416 (1823)Google Scholar
  64. 64.
    W. Noll, A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 198–226 (1958). doi:10.1007/BF00277929MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    J.G. Oldroyd, On the formulation of rheological equations of state. Proc. R. Soc. A-Math. Phys. Eng. Sci. 200(1063), 523–541 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    P.D. Olmsted, Perspectives on shear banding in complex fluids. Rheol. Acta. 47(3), 283–300 (2008). doi:10.1007/s00397-008-0260-9CrossRefGoogle Scholar
  67. 67.
    W. Ostwald, Über die Geschwindigkeitsfunktion der Viskosität disperser Systeme. I. Colloid Polym. Sci. 36, 99–117 (1925). doi:10.1007/BF01431449Google Scholar
  68. 68.
    M. Pekař, I. Samohýl, The Thermodynamics of Linear Fluids and Fluid Mixtures (Springer, 2014). doi:10.1007/978-3-319-02514-8Google Scholar
  69. 69.
    T. Perlácová, V. Průša, Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J. Non-Newton Fluid Mech. 216, 13–21 (2015). doi:10.1016/j.jnnfm.2014.12.006MathSciNetCrossRefGoogle Scholar
  70. 70.
    E.C. Pettit, E.D. Waddington, Ice flow at low deviatoric stress. J. Glaciol. 49(166), 359–369 (2003). doi:10.3189/172756503781830584CrossRefGoogle Scholar
  71. 71.
    V. Průša, K.R. Rajagopal, On implicit constitutive relations for materials with fading memory. J. Non-Newton Fluid Mech. 181–182, 22–29 (2012). doi:10.1016/j.jnnfm.2012.06.004Google Scholar
  72. 72.
    V. Průša, K.R. Rajagopal, On models for viscoelastic materials that are mechanically incompressible and thermally compressible or expansible and their Oberbeck–Boussinesq type approximations. Math. Models Meth. Appl. Sci. 23(10), 1761–1794 (2013). doi:10.1142/S0218202513500516MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    K.R. Rajagopal, On implicit constitutive theories. Appl. Math. 48(4), 279–319 (2003). doi:10.1023/A:1026062615145MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    K.R. Rajagopal, On implicit constitutive theories for fluids. J. Fluid Mech. 550, 243–249 (2006). doi:10.1017/S0022112005008025MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    K.R. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 17(2), 215–252 (2007). doi:10.1142/S0218202507001899MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    K.R. Rajagopal, Remarks on the notion of “pressure”. Int. J. Non-Linear Mech. 71(0), 165–172 (2015). doi:10.1016/j.ijnonlinmec.2014.11.031CrossRefGoogle Scholar
  77. 77.
    K.R. Rajagopal, A.R. Srinivasa, A thermodynamic frame work for rate type fluid models. J. Non-Newton Fluid Mech. 88(3), 207–227 (2000). doi:10.1016/S0377-0257(99)00023-3CrossRefzbMATHGoogle Scholar
  78. 78.
    K.R. Rajagopal, A.R. Srinivasa, On thermomechanical restrictions of continua. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2042), 631–651 (2004). doi:10.1098/rspa.2002.1111MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    K.R. Rajagopal, A.R. Srinivasa, On the thermodynamics of fluids defined by implicit constitutive relations. Z. Angew. Math. Phys. 59(4), 715–729 (2008). doi:10.1007/s00033-007-7039-1MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    K.R. Rajagopal, A.R. Srinivasa, A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials. Proc. R. Soc. A-Math. Phys. Eng. Sci. 467(2125), 39–58 (2011). doi:10.1098/rspa.2010.0136MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    K.R. Rajagopal, L. Tao, Mechanics of Mixtures. Series on Advances in Mathematics for Applied Sciences, vol. 35 (World Scientific Publishing Co. Inc., River Edge, 1995)Google Scholar
  82. 82.
    F. Ree, T. Ree, H. Eyring, Relaxation theory of transport problems in condensed systems. Ind. Eng. Chem. 50(7), 1036–1040 (1958). doi:10.1021/ie50583a038CrossRefzbMATHGoogle Scholar
  83. 83.
    R.S. Rivlin, J.L. Ericksen, Stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955)MathSciNetzbMATHGoogle Scholar
  84. 84.
    I. Samohýl, Thermodynamics of Irreversible Processes in Fluid Mixtures. Teubner-Texte zur Physik [Teubner Texts in Physics], vol. 12 (Teubner, Leipzig, 1987)Google Scholar
  85. 85.
    G.R. Seely, Non-newtonian viscosity of polybutadiene solutions. AIChE J. 10(1), 56–60 (1964). doi:10.1002/aic.690100120CrossRefGoogle Scholar
  86. 86.
    J. Serrin, On the stability of viscous fluid motions. Arch. Ration. Mech. Anal. 3, 1–13 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    M. Šilhavý, Cauchy’s stress theorem for stresses represented by measures. Contin. Mech. Thermodyn. 20(2), 75–96 (2008). doi:10.1007/s00161-008-0073-1MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    A.W. Sisko, The flow of lubricating greases. Ind. Eng. Chem. 50(12), 1789–1792 (1958). doi:10.1021/ie50588a042CrossRefGoogle Scholar
  89. 89.
    T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005) doi:10.1103/RevModPhys.77.977CrossRefGoogle Scholar
  90. 90.
    R. Tanner, K. Walters, Rheology: An Historical Perspective. Rheology Series, vol. 7 (Elsevier, Amsterdam, 1998)Google Scholar
  91. 91.
    C. Truesdell, W. Noll, The non-linear field theories of mechanics, in Handbuch der Physik, ed. by S. Flüge, vol. III/3 (Springer, Berlin, 1965)Google Scholar
  92. 92.
    C. Truesdell, K.R. Rajagopal, An introduction to the Mechanics of Fluids. Modeling and Simulation in Science, Engineering and Technology (Birkhäuser Boston Inc., Boston, 2000)Google Scholar
  93. 93.
    C. Truesdell, R.A. Toupin, The classical field theories, in Handbuch der Physik, ed. by S. Flüge, vol III/1 (Springer, Berlin/Heidelberg/New York, 1960), pp. 226–793Google Scholar
  94. 94.
    A. de Waele, Viscometry and plastometry. J. Oil Colour Chem. Assoc. 6, 33–69 (1923)Google Scholar
  95. 95.
    A.S. Wineman, K.R. Rajagopal, Mechanical Response of Polymers – An Introduction (Cambridge University Press, Cambridge, 2000)Google Scholar
  96. 96.
    K. Yasuda, Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids. PhD thesis, Department of Chemical Engineering, Massachusetts Institute of Technology (1979)Google Scholar
  97. 97.
    H. Ziegler, An Introduction to Thermomechanics (North-Holland, Amsterdam, 1971)zbMATHGoogle Scholar
  98. 98.
    H. Ziegler, C. Wehrli, The derivation of constitutive relations from the free energy and the dissipation function. Adv. Appl. Mech. 25, 183–238 (1987). doi:10.1016/S0065-2156(08)70278-3MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and Physics, Mathematical InstituteCharles University in PraguePraha 8 – KarlínCzech Republic

Personalised recommendations