Advertisement

Hibernation and Torpor: Prospects for Human Spaceflight

  • G. Petit
  • D. Koller
  • L. Summerer
  • G. Heldmaier
  • V. V. Vyazovskiy
  • M. Cerri
  • R. H. Henning
Living reference work entry

Abstract

Despite substantial technical progress in the last decades, long-distance human space travel beyond the Earth-Moon system still represents a challenge. Resources for sustaining humans in good physical and mental health on such journeys are important drivers of complexity and cost. Every kilogram of mass and every cubic meter of volume reduction will reduce the total cost and increase the feasibility and thus the chances of success of such missions. Torpor and hibernation are solutions developed by animals to cope with severe resource restrictions and hostile environments. Reducing the demands on life support systems by putting humans into a state of hibernation might appear like a story straight out of science fiction. This chapter attempts to demonstrate that this concept is no longer in the realm of science fiction by providing an overview of the current scientific understanding of the processes of hibernation and torpor.

References

  1. Adamantidis A, de Lecea L (2008) Sleep and metabolism: shared circuits, new connections. Trends Endocrinol Metab 19(10):362–370CrossRefGoogle Scholar
  2. Alvarado S, Mak T, Liu S, Storey KB, Szyf M (2015) Dynamic changes in global and gene- specific dna methylation during hibernation in adult thirteen-lined ground squirrels, ictidomys tridecemlineatus. J Exp Biol 218(11):1787–1795CrossRefGoogle Scholar
  3. Andermann ML, Lowell BB (2017) Toward a wiring diagram understanding of appetite control. Neuron 95(4):757–778CrossRefGoogle Scholar
  4. Anderson KJ, Vermillion KL, Jagtap P, Johnson JE, Griffin TJ, Andrews MT (2016) Proteogenomic analysis of a hibernating mammal indicates contribution of skeletal muscle physiology to the hibernation phenotype. J Proteome Res 15(4):1253–1261CrossRefGoogle Scholar
  5. Arnold W (1988) Social thermoregulation during hibernation in alpine marmots (Marmota marmota). J Comp Physiol B 158(2):151–156CrossRefGoogle Scholar
  6. Arnold W, Heldmaier G, Ortmann S, Pohl H, Ruf T, Steinlechner S (1991) Ambient temperatures in hibernacula and their energetic consequences for alpine marmots Marmota marmota. J Therm Biol 16(4):223–226CrossRefGoogle Scholar
  7. Baird BJ, Dickey JS, Nakamura AJ, Redon CE, Parekh P, Griko YV, Aziz K, Georgakilas AG, Bonner WM, Martin OA (2011) Hypothermia postpones DNA damage repair in irradiated cells and protects against cell killing. Mutat Res 711(1):142–149CrossRefGoogle Scholar
  8. Ballinger MA, Schwartz C, Andrews MT (2017) Enhanced oxidative capacity of ground squirrel brain mitochondria during hibernation. Am J Phys Regul Integr Comp Phys 312(3):R301–R310Google Scholar
  9. Barnes BM (1989) Freeze avoidance in a mammal: body temperatures below 0 degree c in an arctic hibernator. Science 244(4912):1593–1595CrossRefGoogle Scholar
  10. Bass J (2012) Circadian topology of metabolism. Nature 491(7424):348CrossRefGoogle Scholar
  11. Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330(6009):1349–1354CrossRefGoogle Scholar
  12. Bieber C, Ruf T (2009) Summer dormancy in edible dormice (glis glis) without energetic constraints. Naturwissenschaften 96(1):165–171CrossRefGoogle Scholar
  13. Blackstone E, Morrison M, Roth MB (2005) H2s induces a suspended animation–like state in mice. Science 308(5721):518–518CrossRefGoogle Scholar
  14. Borbély AA, Daan S, Wirz-Justice A, Deboer T (2016) The two-process model of sleep regulation: a reappraisal. J Sleep Res 25(2):131–143CrossRefGoogle Scholar
  15. Bouma HR, Kroese FG, Kok JW, Talaei F, Boerema AS, Herwig A, Draghiciu O, van Buiten A, Epema AH, van Dam A et al (2011) Low body temperature governs the decline of circulating lymphocytes during hibernation through sphingosine-1-phosphate. Proc Natl Acad Sci 108(5):2052–2057CrossRefGoogle Scholar
  16. Bouma HR, Verhaag EM, Otis JP, Heldmaier G, Swoap SJ, Strijkstra AM, Henning RH, Carey HV (2012) Induction of torpor: mimicking natural metabolic suppression for biomedical applications. J Cell Physiol 227(4):1285–1290CrossRefGoogle Scholar
  17. Briese E (1998) Normal body temperature of rats: the setpoint controversy. Neurosci Biobehav Rev 22(3):427–436CrossRefGoogle Scholar
  18. Brown JC, Staples JF (2010) Mitochondrial metabolism during fasting-induced daily torpor in mice. Biochim Biophys Acta (BBA)-Bioenergetics 1797(4):476–486CrossRefGoogle Scholar
  19. Burdakov D, Karnani MM, Gonzalez A (2013) Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav 121:117–124CrossRefGoogle Scholar
  20. Cerri M (2017) The central control of energy expenditure: exploiting torpor for medical applications. Annu Rev Physiol 79:167–186CrossRefGoogle Scholar
  21. Cerri M, Mastrotto M, Tupone D, Martelli D, Luppi M, Perez E, Zamboni G, Amici R (2013) The inhibition of neurons in the central nervous pathways for thermoregulatory cold defense induces a suspended animation state in the rat. J Neurosci 33(7):2984–2993CrossRefGoogle Scholar
  22. Cerri M, Tinganelli W, Negrini M, Helm A, Scifoni E, Tommasino F, Sioli M, Zoccoli A, Durante M (2016) Hibernation for space travel: impact on radioprotection. Life Sci Space Res 11:1–9CrossRefGoogle Scholar
  23. Chanon S, Chazarin B, Toubhans B, Durand C, Chery I, Robert M, Vieille-Marchiset A, Swenson JE, Zedrosser A, Evans AL et al (2018) Proteolysis inhibition by hibernating bear serum leads to increased protein content in human muscle cells. Sci Rep 8(1):5525CrossRefGoogle Scholar
  24. Chung D, Lloyd GP, Thomas RH, Guglielmo CG, Staples JF (2011) Mitochondrial respiration and succinate dehydrogenase are suppressed early during entrance into a hibernation bout, but membrane remodeling is only transient. J Comp Physiol B 181(5):699–711CrossRefGoogle Scholar
  25. Cirelli C, Tononi G (2008) Is sleep essential? PLoS Biol 6(8):e216CrossRefGoogle Scholar
  26. Daan S, Barnes BM, Strijkstra AM (1991) Warming up for sleep?–Ground squirrels sleep during arousals from hibernation. Neurosci Lett 128(2):265–268CrossRefGoogle Scholar
  27. Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Physiology: hibernation in a tropical primate. Nature 429(6994):825CrossRefGoogle Scholar
  28. Dausmann K, Glos J, Heldmaier G (2009) Energetics of tropical hibernation. J Comp Physiol B 179(3):345–357CrossRefGoogle Scholar
  29. de Vrij EL, Vogelaar PC, Goris M, Houwertjes MC, Herwig A, Dugbartey GJ, Boerema AS, Strijkstra AM, Bouma HR, Henning RH (2014) Platelet dynamics during natural and pharmacologically induced torpor and forced hypothermia. PLoS One 9(4):e93218CrossRefGoogle Scholar
  30. Deboer T, Tobler I (1994) Sleep eeg after daily torpor in the djungarian hamster: similarity to the effects of sleep deprivation. Neurosci Lett 166(1):35–38CrossRefGoogle Scholar
  31. Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11(2):114CrossRefGoogle Scholar
  32. Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB (2007) Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem 102(6):1713CrossRefGoogle Scholar
  33. Durante M, Cucinotta FA (2008) Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer 8(6):465CrossRefGoogle Scholar
  34. Evans A, Singh NJ, Friebe A, Arnemo JM, Laske T, Fröbert O, Swenson JE, Blanc S (2016) Drivers of hibernation in the brown bear. Front Zool 13(1):7CrossRefGoogle Scholar
  35. Fietz J, Schlund W, Dausmann K, Regelmann M, Heldmaier G (2004) Energetic constraints on sexual activity in the male edible dormouse (glis glis). Oecologia 138(2):202–209CrossRefGoogle Scholar
  36. Gallagher K, Staples JF (2012) Metabolism of brain cortex and cardiac muscle mitochondria in hibernating 13-lined ground squirrels ictidomys tridecemlineatus. Physiol Biochem Zool 86(1):1–8CrossRefGoogle Scholar
  37. Garner C, Darian-Smith C, Heller H et al (2007) Synaptic protein dynamics in hibernation. J Neurosci 27(1):84–92CrossRefGoogle Scholar
  38. Geiser F (2013) Hibernation. Curr Biol 23(5):R188–R193CrossRefGoogle Scholar
  39. Gemignani J, Gheysens T, Summerer L (2015) Beyond astronaut’s capabilities: the current state of the art. In: 37th annual international conference of the IEEE engineering in medicine and biology society, Milan, August 2015Google Scholar
  40. Ghosh S, Indracanti N, Joshi J, Ray J, Indraganti PK (2017) Pharmacologically induced reversible hypometabolic state mitigates radiation induced lethality in mice. Sci Rep 7(1):14900CrossRefGoogle Scholar
  41. Grabek KR, Martin SL, Hindle AG (2015) Proteomics approaches shed new light on hibernation physiology. J Comp Physiol B 185(6):607–627CrossRefGoogle Scholar
  42. Hajmousa G, Vogelaar P, Brouwer LA, van der Graaf AC, Henning RH, Krenning G (2017) The 6-chromanol derivate sul-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells. Biomaterials 119:43–52CrossRefGoogle Scholar
  43. Han B, Poppinga WJ, Zuo H, Zuidhof AB, Bos IST, Smit M, Vogelaar P, Krenning G, Henning RH, Maarsingh H et al (2016) The novel compound sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease. Sci Rep 6:26928CrossRefGoogle Scholar
  44. Heim AB, Chung D, Florant GL, Chicco AJ (2017) Tissue-specific seasonal changes in mitochondrial function of a mammalian hibernator. Am J Phys Regul Integr Comp Phys 313(2):R180–R190Google Scholar
  45. Heldmaier G, Steinlechner S (1981) Seasonal pattern and energetics of short daily torpor in the djungarian hamster, phodopus sungorus. Oecologia 48(2):265–270CrossRefGoogle Scholar
  46. Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141(3):317–329CrossRefGoogle Scholar
  47. Hendriks KD, Lupi E, Hardenberg MC, Hoogstra-Berends F, Deelman LE, Henning RH (2017) Differences in mitochondrial function and morphology during cooling and rewarming between hibernator and non-hibernator derived kidney epithelial cells. Sci Rep 7(1):15482CrossRefGoogle Scholar
  48. Iliff BW, Swoap SJ (2012) Central adenosine receptor signaling is necessary for daily torpor in mice. Am J Phys Regul Integr Comp Phys 303(5):R477–R484Google Scholar
  49. Jha PK, Foppen E, Kalsbeek A, Challet E (2016) Sleep restriction acutely impairs glucose tolerance in rats. Phys Rep 4(12). https://physoc.onlinelibrary.wiley.com/doi/abs/10.14814/phy2.12839
  50. Kilduff TS, Miller JD, Radeke CM, Sharp FR, Heller HC (1990) 14c-2-deoxyglucose uptake in the ground squirrel brain during entrance to and arousal from hibernation. J Neurosci 10(7):2463–2475CrossRefGoogle Scholar
  51. Kilduff TS, Krilowicz B, Milsom WK, Trachsel L, Wang LC (1993) Sleep and mammalian hibernation: homologous adaptations and homologous processes? Sleep 16(4):372–386CrossRefGoogle Scholar
  52. McAllen RM, Tanaka M, Ootsuka Y, McKinley MJ (2010) Multiple thermoregulatory effectors with independent central controls. Eur J Appl Physiol 109(1):27–33CrossRefGoogle Scholar
  53. McNab BK (1997) On the utility of uniformity in the definition of basal rate of metabolism. Physiol Zool 70(6):718–720CrossRefGoogle Scholar
  54. Mignot E (2008) Why we sleep: the temporal organization of recovery. PLoS Biol 6(4):e106CrossRefGoogle Scholar
  55. Ni Z, McMullen DC, Storey KB et al (2008) Expression of Nrf2 and its downstream gene targets in hibernating 13-lined ground squirrels, spermophilus tridecemlineatus. Mol Cell Biochem 312(1–2):121–129Google Scholar
  56. Oelkrug R, Heldmaier G, Meyer C (2011) Torpor patterns, arousal rates, and temporal organization of torpor entry in wildtype and ucp1-ablated mice. J Comp Physiol B 181(1):137–145CrossRefGoogle Scholar
  57. Ohta H, Okamoto I, Hanaya T, Arai S, Ohta T, Fukuda S (2006) Enhanced antioxidant defense due to extracellular catalase activity in Syrian hamster during arousal from hibernation. Comp Biochem Physiol C Toxicol Pharmacol 143(4):484–491CrossRefGoogle Scholar
  58. Popov V, Bocharova L, Bragin A (1992) Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation. Neuroscience 48(1):45–51CrossRefGoogle Scholar
  59. Richter M, Williams C, Lee T, Tøien Ø, Florant G, Barnes B, Buck C (2014) Thermogenic capacity at subzero temperatures: how low can a hibernator go? Physiol Biochem Zool 88(1):81–89CrossRefGoogle Scholar
  60. Romanovsky AA (2007) Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Phys Regul Integr Comp Phys 292(1):R37–R46Google Scholar
  61. Ruediger J, Van der Zee E, Strijkstra A, Aschoff A, Daan S, Hut R (2007) Dynamics in the ultrastructure of asymmetric axospinous synapses in the frontal cortex of hibernating european ground squirrels (spermophilus citellus). Synapse 61(5):343–352CrossRefGoogle Scholar
  62. Ruf T, Geiser F (2015) Daily torpor and hibernation in birds and mammals. Biol Rev 90(3):891–926CrossRefGoogle Scholar
  63. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68(6):1023–1042CrossRefGoogle Scholar
  64. Sohn JW, Elmquist JK, Williams KW (2013) Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci 36(9):504–512CrossRefGoogle Scholar
  65. Staples JF (2014) Metabolic suppression in mammalian hibernation: the role of mitochondria. J Exp Biol 217(12):2032–2036CrossRefGoogle Scholar
  66. Storey KB, Heldmaier G, Rider MH (2010) Mammalian hibernation: physiology, cell signaling, and gene controls on metabolic rate depression. In: Dormancy and resistance in harsh environments. Springer, pp 227–252. https://link.springer.com/chapter/10.1007%2F978-3-642-12422-8_13
  67. Study Report ESA Aurora Programme C (2004) Human missions to mars. ESA. http://www.esa.int/Our_Activities/Space_Engineering_Technology/CDF/Studies_Reviews
  68. Talaei F, Bouma HR, Van der Graaf AC, Strijkstra AM, Schmidt M, Henning RH (2011) Serotonin and dopamine protect from hypothermia/rewarming damage through the cbs/h2s pathway. PLoS One 6(7):e22568CrossRefGoogle Scholar
  69. Talaei F, Bouma HR, Hylkema MN, Strijkstra AM, Boerema AS, Schmidt M, Henning RH (2012) The role of endogenous h2s formation in reversible remodeling of lung tissue during hibernation in the Syrian hamster. J Exp Biol 215(16):2912–2919CrossRefGoogle Scholar
  70. Tøien Ø, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331(6019):906–909CrossRefGoogle Scholar
  71. Tupone D, Madden CJ, Morrison SF (2013) Central activation of the a1 adenosine receptor (a1ar) induces a hypothermic, torpor-like state in the rat. J Neurosci 33(36):14512–14525CrossRefGoogle Scholar
  72. Van Cauter E, Spiegel K, Tasali E, Leproult R (2008) Metabolic consequences of sleep and sleep loss. Sleep Med 9:S23–S28CrossRefGoogle Scholar
  73. Vermillion KL, Anderson KJ, Hampton M, Andrews MT (2015) Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal. Physiol Genomics 47(3):58–74CrossRefGoogle Scholar
  74. Villanueva-Canas JL, Faherty SL, Yoder AD, Alba MM (2014) Comparative genomics of mammalian hibernators using gene networks. Integr Comp Biol 54(3):452–462CrossRefGoogle Scholar
  75. Vogelaar P, Roorda M, de Vrij EL, Houwertjes MC, Goris M, Bouma HR, van der Graaf AC, Krenning G, Henning RH (2018) The 6-hydroxychromanol derivative SUL-109 ameliorates renal injury after deep hypothermia and rewarming in rats. Nephrol Dial Transplant. https://academic.oup.com/ndt/advance-article-abstract/doi/10.1093/ndt/gfy080/4967843?redirectedFrom=fulltext
  76. Vyazovskiy VV, Harris KD (2013) Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat Rev Neurosci 14(6):443CrossRefGoogle Scholar
  77. Walker J, Haskell E, Berger R, Heller H (1981) Hibernation at moderate temperatures: a continuation of slow wave sleep. Experientia 37(7):726–728CrossRefGoogle Scholar
  78. Webb G, Jagot S, Jakobson M (1982) Fasting-induced torpor in mus musculus and its implications in the use of murine models for human obesity studies. Comp Biochem Physiol A Physiol 72(1):211–219CrossRefGoogle Scholar
  79. Weller TJ, Castle KT, Liechti F, Hein CD, Schirmacher MR, Cryan PM (2016) First direct evidence of long-distance seasonal movements and hibernation in a migratory bat. Sci Rep 6:34585CrossRefGoogle Scholar
  80. Wiener N (1961) Cybernetics or control and communication in the animal and the machine, vol 25. MIT Press, New YorkzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • G. Petit
    • 1
  • D. Koller
    • 1
  • L. Summerer
    • 2
  • G. Heldmaier
    • 3
  • V. V. Vyazovskiy
    • 4
  • M. Cerri
    • 5
  • R. H. Henning
    • 6
  1. 1.Advanced Concepts Team (TEC-SF)ESA – European Space Agency ESTECNoordwijkThe Netherlands
  2. 2.Directorate of Technology, Engineering and Quality; Advanced Concepts and Studies OfficeESA – European Space AgencyNoordwijkThe Netherlands
  3. 3.Institute for Animal PhysiologyPhilipps University MarburgMarburgGermany
  4. 4.Department of Physiol. Anatomy and GeneticsUniversity of OxfordOxfordUK
  5. 5.Department of Biomedical and NeuroMotor SciencesUniversity of BolognaBolognaItaly
  6. 6.Department of Clinical Pharmacy and Pharmacology; EB 70University Medical Center Groningen, University of GroningenGroningenThe Netherlands

Section editors and affiliations

  • Erik Seedhouse
    • 1
  1. 1.MiltonCanada

Personalised recommendations