Encyclopedia of Computer Graphics and Games

Living Edition
| Editors: Newton Lee

Stress Reduction, Relaxation, and Meditative States Using Psychophysiological Measurements Based on Biofeedback Systems via HRV and EEG

  • Jeffery Jonathan Joshua (ישוע) DavisEmail author
  • Robert Kozma
  • Florian Schübeler
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-08234-9_330-1

Synonyms

Psychophysiological coherence and cognition of inner peace and harmony

Definitions

Electroencephalography, or EEG, is an electrophysiological monitoring device comprised of multiple electrodes (small, flat, metal discs with thin wires) placed on the scalp that send signals to a computer in order to noninvasively measure and record electrical activity on the scalp. EEG can be used in cognitive research or to diagnose conditions such as epilepsy and sleep disorders.

Heart rate variability (HRV) is a measure of the patterns prescribed by interbeat intervals of time and the functioning of the heart. HRV has been described as a psychophysiological biomarker to assess coherent or stressful states associated with respiration, cognition, and emotions (McCraty et al. 2009).

Psychophysiological coherence has been widely described as a state conducive to optimal cognitive performance and improved health (McCraty et al. 2009) that has also been associated to inner balance, peace, and...

This is a preview of subscription content, log in to check access.

References

  1. Apple Inc.: Mission Me. iTunes App Store. https://itunes.apple.com/us/app/mission-me/id1290528489?mt=8 (2018). Accessed 15 Dec 2018
  2. Austin, J.H.: Zen and the Brain: Toward an Understanding of Meditation and Consciousness. MIT Press, Cambridge (1999)Google Scholar
  3. Baars, B.J.: A scientific approach to silent consciousness. Front. Psychol. 4(678), 1–3 (2013).  https://doi.org/10.3389/fpsyg.2013.00678CrossRefGoogle Scholar
  4. Buzsáki, G.: Rhythms of the Brain. Oxford University Press, New York (2006)CrossRefGoogle Scholar
  5. Childre, D., Cryer, B.: From Chaos to Coherence – The Power to Change Performance (revised ed.). HeartMath LLC, USA (2008)Google Scholar
  6. Childre, D., McCraty, R.: Psychophysiological correlates of spiritual experience. Biofeedback. 29(4), 13–17 (2001)Google Scholar
  7. Crivellato, E., Ribatti, D.: Soul, mind, brain: Greek philosophy and the birth of neuroscience. Brain Res. Bull. 71(4), 327–336 (2007).  https://doi.org/10.1016/j.brainresbull.2006.09.020CrossRefGoogle Scholar
  8. Davis, J.J.J.: The brain of Melchizedek: a cognitive neuroscience approach to spirituality (Thesis, Master of Science). University of Otago, Dunedin (2009). https://ourarchive.otago.ac.nz/handle/10523/1855Google Scholar
  9. Davis, J.J., Kozma, R.: Analysis of phase relationship in ECoG using Hilbert transform and information theoretic measures. Paper Presented at the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, 10–15 June 2012Google Scholar
  10. Davis, J.J., Kozma, R.: Creation of knowledge & meaning manifested via cortical singularities in cognition. Towards a methodology to understand intentionality and critical behavior in neural correlates of awareness. Paper Presented at the 2013 IEEE Symposium Series on Computational Intelligence (SSCI) Cognitive Algorithms, Mind, and Brain (CCMB), Singapore, 16–19 Apr 2013Google Scholar
  11. Davis, J.J., Kozma, R.: Sensitivity analysis of Hilbert transform with band-pass FIR filters for robust brain computer interface. Paper Presented at the 2014 IEEE Symposium on Computational Intelligence in Brain Computer Interfaces (CIBCI), Orlando, 9–12 Dec 2014Google Scholar
  12. Davis, J.J., Kozma, R.: Movie-making of spatiotemporal dynamics in complex systems. In: Lee, N. (ed.) Encyclopedia of Computer Graphics and Games. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-08234-9_287-1CrossRefGoogle Scholar
  13. Davis, J.J.J., Kozma, R.: Visualization of human cognitive states monitored by high-density EEG arrays. Proc. Comput. Sci. 144, 219–231 (2018a).  https://doi.org/10.1016/j.procs.2018.10.522CrossRefGoogle Scholar
  14. Davis, J.J.J., Gillett, G., Kozma, R.: Revisiting Brentano on consciousness: striking correlations with electrocorticogram findings about the action-perception cycle and the emergence of knowledge and meaning. Mind Matter. 13(1), 45–69 (2015)Google Scholar
  15. Davis, J.J.J., Kozma, R., Freeman, W.J.: The art of encephalography to understand and discriminate higher cognitive functions visualizing big data imaging using brain dynamics movies. Proc. Comput. Sci. 53(1), 56–63 (2015a).  https://doi.org/10.1016/j.procs.2015.07.279CrossRefGoogle Scholar
  16. Davis, J.J., Kozma, R., Lin, C.-T., Freeman, W.J.: Spatio-temporal EEG pattern extraction using high-density scalp arrays. Paper Presented at the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, 24–29 July 2016Google Scholar
  17. Davis, J.J.J., Lin, C.-T., Gillett, G., Kozma, R.: An integrative approach to analyze EEG signals and human brain dynamics in different cognitive states. J. Artif. Intell. Soft Comput. Res. 7(4), 287–299 (2017).  https://doi.org/10.1515/jaiscr-2017-0020CrossRefGoogle Scholar
  18. Davis, J.J.J., Schübeler, F. Kozma R.: Heart rate variability dynamics and its implications for individual psychophysiological coherence in community dynamics while in meditation. Center for Open Science. https://osf.io/vxjwc/ (2018). Accessed 15 Dec 2018
  19. Del Cul, A., Baillet, S., Dehaene, S.: Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biol. 5(10), 2408–2423 (2007).  https://doi.org/10.1371/journal.pbio.0050260CrossRefGoogle Scholar
  20. Firstbeat Technologies Ltd.: Firstbeat Bodyguard 2 Guide. https://www.firstbeat.com/app/uploads/2015/10/150811_Bodyguard2_Guide_ENG.pdf (2017). Accessed 15 Dec 2018
  21. Freeman, W.J., Quiroga, R.Q.: Imaging Brain Function with EEG: Advanced Temporal and Spatial Analysis of Electroencephalographic Signals. Springer, New York (2013)CrossRefGoogle Scholar
  22. Freeman, W.J., Rogers, L.J., Holmes, M.D., Silbergeld, D.L.: Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J. Neurosci. Methods. 95(2), 111–121 (2000).  https://doi.org/10.1016/S0165-0270(99)00160-0CrossRefGoogle Scholar
  23. Freeman, W.J., Holmes, M.D., Burke, B.C., Vanhatalo, S.: Spatial spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol. 114(6), 1053–1068 (2003).  https://doi.org/10.1016/S1388-2457(03)00045-2CrossRefGoogle Scholar
  24. HeartMath LLC: Welcome to emWave® https://bio-medical.com/media/support/emwave_pro-tour.pdf (2016). Accessed 15 Dec 2018
  25. Heck, D.H., McAfee, S.S., Liu, Y., Babajani-Feremi, A., Rezaie, R., Freeman, W.J., Wheless, J.W., Papanicolaou, A.C., Ruszinkó, M., Sokolov, Y., Kozma, R.: Breathing as a fundamental rhythm of brain function. Front. Neural Circuits. 10(115), 1–8 (2017).  https://doi.org/10.3389/fncir.2016.00115CrossRefGoogle Scholar
  26. Kasabov, N., Capecci, E.: Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inform. Sci. 294, 565–575 (2015).  https://doi.org/10.1016/j.ins.2014.06.028MathSciNetCrossRefGoogle Scholar
  27. Kasamatsu, A., Hirai, T.: An electroencephalographic study on the zen meditation (Zazen). Folia Psychiatr. Neurol. Jpn. 20(4), 315–336 (1966).  https://doi.org/10.1111/j.1440-1819.1966.tb02646.xCrossRefGoogle Scholar
  28. Kim, D.-K., Lee, K.-M., Kim, J., Whang, M.-C., Kang, S.W.: Dynamic correlations between heart and brain rhythm during autogenic meditation. Front. Hum. Neurosci. 7(414), 1–8 (2013).  https://doi.org/10.3389/fnhum.2013.00414CrossRefGoogle Scholar
  29. Kozma, R., Davis, J.J.J.: Why do phase transitions matter in minds? J. Conscious. Stud. 25(1–2), 131–150 (2018)Google Scholar
  30. Kozma, R., Freeman, W.J.: Classification of EEG patterns using nonlinear dynamics and identifying chaotic phase transitions. Neurocomputing. 44–46, 1107–1112 (2002)CrossRefGoogle Scholar
  31. Kozma, R., Davis, J.J., Freeman, W.J.: Synchronized minima in ECoG power at frequencies between Beta-gamma oscillations disclose cortical singularities in cognition. J. Neurosci. Neuroeng. 1(1), 13–23 (2012)CrossRefGoogle Scholar
  32. Kozma, R., Freeman, W.J., Davis, J.J., Lin, C.-T.: Model-based measurement of EEG data from linear high-density array. Poster Presentation at SfN Annual Meeting, Washington, 15–19 Nov 2014Google Scholar
  33. Lazar, S.: Publications. Harvard University. https://scholar.harvard.edu/sara_lazar/publications (2018). Accessed 15 Dec 2018
  34. McCraty, R.: Heart rhythm coherence – an emerging area of biofeedback. Biofeedback. 30(1), 23–25 (2002)Google Scholar
  35. McCraty, R.: New frontiers in heart rate variability and social coherence research: techniques, technologies, and implications for improving group dynamics and outcomes. Front. Public Health. 5(267), 1–13 (2017).  https://doi.org/10.3389/fpubh.2017.00267CrossRefGoogle Scholar
  36. McCraty, R., Childre, D.: Coherence: bridging personal, social, and global health. Altern. Ther. Health Med. 16(4), 10–24 (2010)Google Scholar
  37. McCraty, R., Tomasino, D.: Heart rhythm coherence feedback: a new tool for stress reduction, rehabilitation, and performance enhancement. Paper Presented at the First Baltic Forum on Neuronal Regulation and Biofeedback, Riga, 2–5 Nov 2004Google Scholar
  38. McCraty, R., Atkinson, M., Tomasino, D.: Science of the Heart: Exploring the Role of the Heart in Human Performance. Institute of HeartMath, Boulder Creek (2001)Google Scholar
  39. McCraty, R., Atkinson, M., Tomasino, D., Bradley, R.T.: The Coherent Heart: Heart–Brain Interactions, Psychophysiological Coherence, and the Emergence of System-Wide Order. Institute of HeartMath, Boulder Creek (2006)Google Scholar
  40. McCraty, R., Atkinson, M., Tomasino, D., Bradley, R.T.: The coherent heart: heart–brain interactions, psychophysiological coherence, and the emergence of system-wide order. Integral Rev. 5(2), 10–115 (2009)Google Scholar
  41. Pribram, K.H.: The FORM Within: My Point of View. Prospecta Press, Westport (2013)Google Scholar
  42. Schwartz, J.M., Stapp, H.P., Beauregard, M.: Quantum physics in neuroscience and psychology: a neurophysical model of mind-brain interaction. Phil. Trans. R. Soc. B. 360(1458), 1309–1327 (2005).  https://doi.org/10.1098/rstb.2004.1598CrossRefGoogle Scholar
  43. Seth, A.K., Dienes, Z., Cleeremans, A., Overgaard, M., Pessoa, L.: Measuring consciousness: relating behavioral and neurophysiological approaches. Trends Cogn. Sci. 12(8), 314–321 (2008).  https://doi.org/10.1016/j.tics.2008.04.008CrossRefGoogle Scholar
  44. van der Eijk, P.: Body and spirit in Greek medicine and philosophy. StudyLib. https://studylib.net/doc/8695304/body-and-spirit-in-greek-medicine-and-philosophy (2007). Accessed 15 Dec 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jeffery Jonathan Joshua (ישוע) Davis
    • 1
    Email author
  • Robert Kozma
    • 2
  • Florian Schübeler
    • 1
  1. 1.The Embassy of PeaceWhitiangaNew Zealand
  2. 2.CLION, Department Mathematical SciencesUniversity of MemphisMemphisUSA