Encyclopedia of Computer Graphics and Games

Living Edition
| Editors: Newton Lee

Collision Detection

  • Simena DinasEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-08234-9_291-1

Definition

Collision detection is the process of determining computationally if two or more objects intersect, the time, and the parts of the objects that are involved in the intersection.

Introduction

Collision detection (CD) concerns to determining if the intersection between a pair of objects happens, and after a positive answer, to determining when, and where it happens (Ericson 2005). If a pair of objects intersect must give information about the existence of the intersection, whereas when they intersect must give temporal information about the time of contact. Finally, where the objects intersect must give information about the area of each object that is involved in the intersection.

For applications on robotic and graphic computer areas, it is important to model and simulate the physics of the objects, thus, these areas have used highly CD approaches whereas, specific areas using it include physical-based, surgical, dynamic and cloth simulations, motion planning, molecular...

This is a preview of subscription content, log in to check access.

References

  1. Arcila, O.: Nuevas Representaciones Dobles (Externas e Internas) en Detectores de Colisiones Jer´arquicos. PhD thesis, Facultad de Ingeniera, Universidad del Valle, Cali (2008)Google Scholar
  2. Avril, Q., Gouranton, V., Arnaldi, B.: Collision detection: Broad phase adaptation from multi-core to multi-GPU architecture. J. Virtual Real. Broadcast. 11(6), 1–13 (2014)Google Scholar
  3. Basch, J.: Kinetic Data Structures. PhD thesis, Stanford University, Stanford (1999)Google Scholar
  4. Dinas, S., Bañón, J.M.: A literature review of bounding volumes hierarchy focused on collision detection – revisin de literatura de jerarqua volmenes acotantes enfocados en deteccin de colisiones. Ing. Compet. 17, 63–76 (2015)Google Scholar
  5. Dinas, S., Arcila, O., Bañón, J.M.: Un detector de colisiones dina´mico basado en esferas exteriores e interiores. In: Quinto Congreso Colombiano de Computacio´n – 5CCC (2010)Google Scholar
  6. Du, P., Zhao, J.-Y., Pan, W.-B., Wang, Y.-G.: GPU accelerated real-time collision handling in virtual disassembly. J. Comput. Sci. Technol. 30(3), 511–518 (2015)CrossRefGoogle Scholar
  7. Ericson, C.: Real-Time Collision Detection. The Morgan Kaufmann Series in Interactive 3-D Technology. Morgan Kaufmann, Burlington (2005)Google Scholar
  8. He, L., Ortiz, R., Enquobahrie, A., Manocha, D.: Interactive continuous collision detection for topology changing models using dynamic clustering. In: Proceedings of the 19th Symposium on Interactive 3D Graphics and Games, i3D ’15, pp. 47–54. ACM, New York (2015)Google Scholar
  9. Moll, M., Sucan, I.A., Kavraki, L.E.: An extensible benchmarking infrastructure for motion planning algorithms. CoRR, abs/1412.6673 (2014)Google Scholar
  10. Nguyen, A.: Implicit Bounding Volumes and Bounding Volume Hierarchies. PhD thesis, Stanford University, Stanford (2006)Google Scholar
  11. Pabst, S., Koch, A., Straer, W.: Fast and scalable CPU/GPU collision detection for rigid and deformable surfaces. Comput. Graph. Forum. 29(5), 1605–1612 (2010)CrossRefGoogle Scholar
  12. Tang, M., Manocha, D., Tong, R.: Fast continuous collision detection using deforming non-penetration filters. In: I3D ’10: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 7–13. ACM, New York (2010)Google Scholar
  13. Tang, M., Manocha, D., Kim, Y.J.: Hierarchical and controlled advancement for continuous collision detection of rigid and articulated models. IEEE Trans. Vis. Comput. Graph. 99(PrePrints), 1 (2013)Google Scholar
  14. Wang, X., Tang, M., Manocha, D., Tong, R.: Efficient BVH-based collision detection scheme with ordering and restructuring. Comput. Graph. Forum (Proc. Eurographics 2018). 37(2), 1–13 (2018)CrossRefGoogle Scholar
  15. Weller, R.: A brief overview of collision detection. In: New Geometric Data Structures for Collision Detection and Haptics. Springer Series on Touch and Haptic Systems, pp. 9–46. Springer International Publishing, New York (2013)Google Scholar
  16. Wong, S.-K.: Adaptive continuous collision detection for cloth models using a skipping frame session. J. Inf. Sci. Eng. 27(5), 1545–1559 (2011)Google Scholar
  17. Zhang, X., Lee, M., Kim, Y.J.: Interactive continuous collision detection for non-convex polyhedra. Vis. Comput. 22, 749–760 (2006)CrossRefGoogle Scholar
  18. Zhao, J., Ye, J., Li, J.: Resolving cloth penetrations with discrete collision detection. In: 2013 International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics), pp. 443–444 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departamento de Electrónica y Ciencias de la ComputaciónPontificia Universidad JaverianaCaliColombia