Encyclopedia of Computer Graphics and Games

Living Edition
| Editors: Newton Lee

Overview of Virtual Ambisonic Systems

  • Michael McloughlinEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-08234-9_275-1

Synonyms

Definition

A surround sound method that combines binaural audio reproduction methods with ambisonic surround sound technology.

Introduction

Virtual ambisonics is a method that combines binaural audio simulation and the surround sound reproduction method known as ambisonics. This entry gives an overview of the basic psychoacoustic theories behind binaural hearing, methods to simulate binaural hearing, and the issues that may arise from these simulation methods. This is followed by a brief description of ambisonics and how it can be combined with binaural audio to create virtual ambisonics.

Binaural Hearing

Binaural hearing describes how humans are able to locate a sound source in three dimensions using two ears. A listener can identify sound sources based on the difference between the time of arrival (interaural time differences or IDT) (Wightman and Kistler 1992) or the difference in intensity levels (interaural level difference or ILD) (Hartmann...

This is a preview of subscription content, log in to check access.

References

  1. Ambisonic Audio: [Internet]. Unity User Manual. [cited 2012 July 20] (2017). Available from https://docs.unity3d.com/Manual/AmbisonicAudio.html
  2. Bernschütz, B.: A spherical far field HRIR/HRTF compilation of the Neumann KU 100. In: Fortschritte der Akustik – AIA-DAGA 2013 [Internet], pp. 592–595 (2013). Available from http://www.audiogroup.web.fh-koeln.de/FILES/AIA-DAGA2013_HRIRs.pdf
  3. Braun, S., Frank, M.: Localization of 3D ambisonic recordings and ambisonic virtual sources. In: International Conference on Spatial Audio, (2), (2011)Google Scholar
  4. Fellgett, P.: Ambisonic reproduction of sound. Electron. Power. 19(20), 492–494 (1973)CrossRefGoogle Scholar
  5. Furness, B.Y.R.K.: Ambisonics- an overview. In: Proceedings of the 8th International Conference of the Audio Engineering Society [Internet], vol. 2(4), p. 2364 (2011). Available from http://www.nature.com/doifinder/10.1038/ng.926
  6. Gorzel, M., Kearney, G., Rice, H., Boland, F.: On the perception of dynamic sound source in ambisonic binaural renderings. In: Audio Engineering Society 41st International Conference, London, 2–4 Feb 2011, pp. 1–9 (2011)Google Scholar
  7. Hammershoi, D.: Fundamental aspects of the binaural recording and synthesis techniques. In: AES 100th Convention (1996)Google Scholar
  8. Hammershoi, D., Moller, H.: Binaural technique – basic methods for recording, synthesis, and reproduction. In: Communication Acoustics, pp. 223–254 (2005)Google Scholar
  9. Hartmann, W.M., Constan, Z.A.: Interaural level differences and the level-meter model. J. Acoust. Soc. Am. [Internet]. 112(3), 1037–1045 (2002). Available from http://asa.scitation.org/doi/10.1121/1.1500759CrossRefGoogle Scholar
  10. Hofman, P.M.M., Van Riswick, J.G.A., Van Opstal, A.J.: Relearning sound localization with new ears. Nat. Neurosci. [Internet]. 1(5), 417–421 (1998). Available from http://www.cns.nyu.edu/events/earclub/artfiles/Hofman1998.pdf, http://www.ncbi.nlm.nih.gov/pubmed/10196533CrossRefGoogle Scholar
  11. Jot, J.-M., Wardle, S., Larcher, V.: Approaches to binaural synthesis. In: 105th AES Conference [Internet], p. 4861 (1998). Available from http://www.aes.org/e-lib/browse.cfm?elib=8319
  12. Kearney, G., Gorzel, M., Rice, H., Boland, F.: Distance perception in interactive virtual acoustic environments using first and higher order ambisonic sound fields. Acta Acustica United Acustica [Internet]. 98(1), 61–71 (2012). Available from http://www.scopus.com/inward/record.url?eid=2-s2.0-84855302831&partnerID=40&md5=19e29fe499bcfdc6ffcb52c22cc8598aCrossRefGoogle Scholar
  13. Litovsky, R.Y., Colburn, H.S., Yost, W.A., Guzman, S.J.: The precedence effect. J. Acoust. Soc. Am. [Internet]. 106(4), 1633–1654 (1999). Available from http://asa.scitation.org/doi/10.1121/1.427914CrossRefGoogle Scholar
  14. Nettingsmeier, J., Dohrmann, D.: Preliminary studies on large-scale higher-order ambisonic sound reinforcement systems. In: Ambisonics Symposium, pp. 1–6 (2011)Google Scholar
  15. Noisternig, M., Musil, T., Sontacchi, A., Holdrich, R.: 3D binaural sound reproduction using a virtual ambisonic approach. In: International Symposium on Virtual Environments, Human-Computer Interfaces, and Measurement Systems, Vienna (2003)Google Scholar
  16. Perrett, S., Noble, W.: The contribution of head motion cues to localization of low-pass noise. Percept. Psychophys. [Internet]. 59(7), 1018–1026 (1997). Available from http://www.ncbi.nlm.nih.gov/pubmed/9360475, http://www.springerlink.com/index/10.3758/BF03205517CrossRefGoogle Scholar
  17. Wierstorf, H., Geier, M., Raake, A., Spors, S.: A free database of head-related impulse response measurements in the horizontal plane with multiple distances. In: Audio Engineering Society Convention [Internet], vol. 130, pp. 3–6 (2011). Available from https://dev.qu.tu-berlin.de/projects/measurements/
  18. Wightman, F.L., Kistler, D.J.: The dominant role of low-frequency interaural time differences in sound localization. J. Acoust. Soc. Am. [Internet]. 91(3), 1648–1661 (1992). Available from http://www.ncbi.nlm.nih.gov/pubmed/1564201CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Digital MusicQueen Mary University of LondonLondonUK