Encyclopedia of Computer Graphics and Games

Living Edition
| Editors: Newton Lee

Computational Steering for Computational Fluid Dynamics

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-08234-9_215-1


Computational steering

is the practice of manually intervening with an otherwise autonomous computational process in order to change its outcome.

Computational fluid dynamics (CFD)

is the prediction of fluid flow by numerical methods.

In situ visualization

refers to the visualization of result data at runtime.


Most computational fluid dynamics (CFD) simulations require massive computational power, which is usually provided by traditional high-performance computing (HPC) environments. Often, simulations are executed on a massive number of CPU cores (<check>O</check>(1000)) that are hosted in a remote supercomputing center or an in-house supercomputing facility. Due to several limitations of HPC environments, the majority of present CFD simulations are usually executed non-interactively, although interactivity of the simulation process is highly appreciated by scientists and engineers.

In this entry, different approaches for interactive CFD simulations are...

This is a preview of subscription content, log in to check access.


  1. Akenine-Moller, T., Haines, E., Hoffman, N.: Real-Time Rendering. A K Peters/CRC Press (2008). ISBN: 978-1-56-881424-7Google Scholar
  2. Borrmann, A.: Computerunterstützung verteiltkooperativer Bauplanung durch Integration interaktiver Simulationen und räumlicher Datenbanken. PhD thesis, Technische Universität München (2007)Google Scholar
  3. Borrmann, A., Wenisch, P., van Treeck, C., Rank, E.: Collaborative computational steering: principles and application in HVAC layout. Integr. Comput. Aid. Eng. 13(4), 361–376 (2006)CrossRefGoogle Scholar
  4. Delbosc, N., Summers, J.L., Khan, A.I., Kapur, N., Noakes, C.J.: Optimized implementation of the lattice Boltzmann method on a graphics processing unit towards real-time fluid simulation. Comput. Math. Appl. 67, 462–475 (2014)MathSciNetCrossRefGoogle Scholar
  5. Geist II, G.A., Kohl, J.A., Papadopoulos, P.M.: CUMULVS: providing fault-tolerance, visualization and steering of parallel applications. Int. J. High Perform. Comput. Appl. 11, 224–236 (1996)Google Scholar
  6. Glessmer, M., Janßen, C.: Using an interactive lattice Boltzmann solver in fluid mechanics instruction. Computation. 5(4), 35 (2017).  https://doi.org/10.3390/computation5030035. ISSN 2079-3197CrossRefGoogle Scholar
  7. Hart, D., Kraemer, E.: Consistency considerations in the interactive steering of computations. Int. J. Parallel Distrib. Syst. Netw. 2, 171–179 (1999)Google Scholar
  8. Harwood, A.R.G.: Interactive modelling and simulation for engineering design and analysis. NAFEMS Benchmark Mag. 2018, 20–24 (2018)Google Scholar
  9. Harwood, A.R.G.: GPU-powered, interactive flow simulation on a peer-to-peer group of mobile devices. Adv. Eng. Softw. 133, 39–51 (2019).  https://doi.org/10.1016/j.advengsoft.2019.04.003CrossRefGoogle Scholar
  10. Harwood, A.R.G., Revell, A.J.: Parallelisation of an interactive lattice Boltzmann method on an android-powered mobile device. Adv. Eng. Softw. 104, 38–50 (2017).  https://doi.org/10.1016/j.advengsoft.2016.11.005. ISSN 0965-9978. http://www.sciencedirect.com/science/article/pii/S0965997816301855CrossRefGoogle Scholar
  11. Harwood, A.R.G., Revell, A.J.: Interactive flow simulation using Tegra-powered mobile devices. Adv. Eng. Softw. 115, 363–373 (2018).  https://doi.org/10.1016/j.advengsoft.2017.10.005. ISSN 0965-9978. http://www.sciencedirect.com/science/article/pii/S0965997817307135CrossRefGoogle Scholar
  12. Janßen, C.F., Bindick, S.: jFlowSim v0.8-beta. (2019).  https://doi.org/10.5281/zenodo.2653571
  13. Johnson, C.R., Parker, S.G.: A computational steering model applied to problems in medicine. In: Supercomputing ‘94: Proceedings of the 1994 Conference on Supercomputing, pp. 540–549. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  14. Johnson, C., Parker, S.G., Hansen, C., Kindlmann, G.L., Livnat, Y.: Interactive simulation and visualization. Computer. 32(12), 59–65 (1999)CrossRefGoogle Scholar
  15. Khan, M.A.I., Delbosc, N., Noakes, C.J., Summers, J.: Real-time flow simulation of indoor environments using lattice Boltzmann method. Build. Simul. 8(4), 405–414 (2015)CrossRefGoogle Scholar
  16. Kirk, D., Hwu, W.: Programming Massively Parallel Processors. Elsevier Inc, Amsterdam (2010). ISBN 978-0-12-381472-2Google Scholar
  17. Koliha, N., Janßen, C., Rung, T.: Towards online visualization and interactive monitoring of real-time cfd simulations on commodity hardware. Computation. 3(3), 444478 (2015) . ISSN 2079-3197).  https://doi.org/10.3390/computation3030444CrossRefGoogle Scholar
  18. Krüger, T., Varnik, F., Raabe, D.: Shear stress in lattice Boltzmann simulations. Phys. Rev. E. 79, 046704 (2009)CrossRefGoogle Scholar
  19. Kühner, S.: Virtual Reality-basierte Analyse und interaktive Steuerung von Strömungssimulationen im Bauwesen. PhD thesis, Technische Universität München (2003)Google Scholar
  20. Linxweiler, J., Tölke, J., Krafczyk, M.: Applying modern soft- and hardware technologies for computational steering approaches in computational fluid dynamics. In: Cyberworlds, 2007. CW ‘07. International Conference on, pp. 41–45 (2007)CrossRefGoogle Scholar
  21. Linxweiler, J., Krafczyk, M., Tölke, J.: Highly interactive computational steering for coupled 3d flow problems utilizing multiple gpus. Comput. Vis. Sci. 1–16 13(7), pp. 299–314 (2011).  https://doi.org/10.1007/s00791-010-0151-3CrossRefGoogle Scholar
  22. Marshall, R., Kempf, J., Dyer, S., Yen, C.-C.: Visualization methods and simulation steering for a 3d turbulence model of Lake Erie. SIGGRAPH Comput. Graph. 24(2), 89–97 (1990)CrossRefGoogle Scholar
  23. McCormick, B.H., De Fanti, T.A., Brown, M.D.: Visualization in scientific computing: report of the nsf advisory panel on graphics, image processing and workstations. ACM Comput. Graph. 21(6), (1987)Google Scholar
  24. Mulder, J.D., van Wijk, J.: 3D computational steering with parametrized geometric objects. In: Visualization ‘95 (Proceedings of the 1995 Visualization Conference), pp. 304–311. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  25. Mulder, J.D., van Wijk, J.J., van Liere, R.: A survey of computational steering environments. Futur. Gener. Comput. Syst. 15(1), 119–129 (1999)CrossRefGoogle Scholar
  26. NVIDIA.: NVIDIA’s Next Generation CUDA Compute Architecture: Fermi. NVIDIA Whitepaper (2013a). http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
  27. NVIDIA.: CUDA C Programming Guide. Technical report, NVIDIA (2013b)Google Scholar
  28. Parker, S.G., Johnson, C.R.: Scirun: a scientific programming environment for computational steering. In: Supercomputing ‘95: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing (CDROM), p. 52. ACM, New York (1995)Google Scholar
  29. Parker, S.G., Hansen, C.D., Johnson, C.R., Miller, M.: Computational steering and the scirun integrated problem solving environment. In: DAGSTUHL ‘97: Proceedings of the Conference on Scientific Visualization, p. 257. IEEE Computer Society, Washington, DC (1997a)Google Scholar
  30. Parker, S.G., Johnson, C.R., Beazley, D.: Computational steering software systems and strategies. IEEE Comput. Sci. Eng. 4(4), 50–59 (1997b)CrossRefGoogle Scholar
  31. Parker, S.G., Weinstein, D.W., Johnson, C.R.: The scirun computational steering software system. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools for Scientific Computing, pp. 5–44. Birkhauser Boston Inc., Cambridge, MA (1997c)CrossRefGoogle Scholar
  32. Patterson, D., Hennessy, J.: Computer Organization and Design. Elsevier Inc., Burlington (2011). ISBN 978-0-12-374750-1zbMATHGoogle Scholar
  33. Pickles, S.M., Haines, R., Pinning, R.L., Porter, A.R.: A practical toolkit for computational steering. Philos. Transact. A Math. Phys. Eng. Sci. 363(1833), 1843–1853 (2005)CrossRefGoogle Scholar
  34. Überrück, M., Janßen, C.: On the applicability of lattice Boltzmann single-phase models for the simulation of wave impact in lng tanks. Int. J. Offshore Polar Eng. 27(4), 390–396 (2017)CrossRefGoogle Scholar
  35. van Liere, R., Mulder, J.D.: Ubiquitous computational steering. In: IEEE Visualization ‘97 (1997)Google Scholar
  36. Van Liere, R., Van Wijk, J.J.: Cse – a modular architecture for computational steering. In: Proceedings of the Seventh Eurographics Workshop on Visualization in Scientific Computing, pp. 257–266. Springer, New York (1996)Google Scholar
  37. van Liere, R., D. Mulder, J., van Wijk, J.J.: Computational steering. Futur. Gener. Comput. Syst. 12(5), 441–450 (1997)CrossRefGoogle Scholar
  38. Van Wijk, J., Van Liere, R.: An environment for computational steering. In: Centre for Mathematics and Computer Science (CWI), pp. 23–27. Computer Society Press (1997)Google Scholar
  39. Van Wijk, J.J., Van Liere, R., Mulder, J.D., Van Wijk, J.J., Van Liere, R., Mulder, J.D.: Bringing computational steering to the user. In: Presented at the Dagstuhl Seminar on Scientific Visualization, pp. 304–313 (1997)Google Scholar
  40. Wenisch, P.: Computational Steering of CFD Simulations on Teraflop-Supercomputers. Ph.D. thesis, Technische Universität München (2008)Google Scholar
  41. Wenisch, P., Wenisch, O., Rank, E.: Harnessing high-performance computers for computational steering. In: Recent Advances in Parallel Virtual Machine and Message Passing Interface, pp. 536–543 (2005)CrossRefGoogle Scholar
  42. Wright, H., Crompton, R.H., Kharche, S., Wenisch, P.: Steering and visualization: enabling technologies for computational science. Futur. Gener. Comput. Syst. 26(3), 506–513 (2010)CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Center for Mechanics, Uncertainty and Simulation in EngineeringTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Research IT, IT ServicesThe University of ManchesterManchesterUK
  3. 3.Institute for Fluid Dynamics and Ship TheoryHamburg University of TechnologyHamburgGermany