Encyclopedia of Computer Graphics and Games

Living Edition
| Editors: Newton Lee

Theory of Minkowski-Lorentz Spaces

  • Lionel GarnierEmail author
  • Jean-Paul Bécar
  • Lucie Druoton
  • Laurent Fuchs
  • Géraldine Morin
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-08234-9_111-1

Synonyms

Definitions

Introduction of Minkowski-Lorentz spaces to simplify Euclidean 2- or 3-dimensional problems.

Introduction

In this entry, the authors propose a survey on Minkowski-Lorentz spaces which are a generalization of the space-time used in Einstein’s theory, equipped of the nondegenerate indefinite quadratic form
This is a preview of subscription content, log in to check access.

References

  1. Bécar, J.P.: Forme (BR) des coniques et de leurs faisceaux. Ph.D. thesis, Université de Valenciennes et de Hainaut-Cambrésis, LIMAV, Décembre 1997Google Scholar
  2. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object Oriented Approach to Geometry. Morgan Kaufmann Publishers, San Francisco, CA, USA (2007)CrossRefGoogle Scholar
  3. Fiorot, J.C., Jeannin, P.: Courbes et surfaces rationnelles, vol. RMA 12. Masson, Université du Michigan (1989)Google Scholar
  4. Fiorot, J.C., Jeannin, P.: Courbes splines rationnelles, applications à la CAO, vol. RMA 24. Masson, Université du Michigan (1992)Google Scholar
  5. Foufou, S., Garnier, L.: Dupin cyclide blends between quadric surfaces for shape modeling. Comput. Graph. Forum. 23(3), 321–330 (2004)CrossRefGoogle Scholar
  6. Garnier, L., Bécar, J.-P.: Mass points, Bézier curves and conics: a survey. In: Eleventh International Workshop on Automated Deduction in Geometry, Proceedings of ADG 2016, pp. 97–116. Strasbourg, June 2016. http://ufrsciencestech.u-bourgogne.fr/~garnier/publications/adg2016/
  7. Garnier, L., Bécar, J.-P., Druoton, L.: Canal surfaces as Bézier curves using mass points. Comput. Aided Geom. Des. 54, 15–34 (2017)CrossRefGoogle Scholar
  8. Goldman, R.: On the algebraic and geometric foundations of computer graphics. ACM Trans. Graph. 21(1), 52–86 (2002)CrossRefGoogle Scholar
  9. Langevin, R., Solanes, G.: The geometry of canal surfaces and the length of curves in de sitter space. Adv. Geom. 11(4), 585–601 (2011)MathSciNetCrossRefGoogle Scholar
  10. Langevin, R., Sifre, J.-C., Druoton, L., Garnier, L., Paluszny, M.: Finding a cyclide given three contact conditions. Comput. Appl. Math. 34, 1–18 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lionel Garnier
    • 1
    Email author
  • Jean-Paul Bécar
    • 2
  • Lucie Druoton
    • 1
  • Laurent Fuchs
    • 3
  • Géraldine Morin
    • 4
  1. 1.LE2i, FRE 2005, CNRS, Arts et MétiersUniversity of Burgundy-Franche-ComtéDijonFrance
  2. 2.LAMAV-CGAOFR CNRS 2956 EA 4015ValenciennesFrance
  3. 3.LIM-SICUMR CNRS 7252, Université de PoitiersChasseneuilFrance
  4. 4.Laboratoire IRITUMR CNRS 5505, Université Paul SabatierToulouseFrance