Advertisement

POPMUSIC

  • Éric D. Taillard
  • Stefan Voß
Living reference work entry

Abstract

This chapter presents POPMUSIC, a general decomposition-based framework within the realm of metaheuristics and matheuristics that has been successfully applied to various combinatorial optimization problems. POPMUSIC is especially useful for designing heuristic methods for large combinatorial problems that can be partially optimized. The basic idea is to optimize subparts of solutions until a local optimum is reached. Implementations of the technique to various problems show its broad applicability and efficiency for tackling especially large-size instances.

Keywords

Decomposition algorithm Fix-and-optimize method Large Neighbourhood Search Large-scale optimization Matheuristics Metaheuristics 

References

  1. 1.
    Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure for job shop scheduling. Manag Sci 34:391–401MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alvim ACF, Taillard ÉD (2007) An efficient POPMUSIC based approach to the point feature label placement problem. In: Metaheuristic International Conference (MIC’07) Proceedings.Google Scholar
  3. 3.
    Alvim ACF, Taillard ÉD (2009) POPMUSIC for the point feature label placement problem. Eur J Oper Res 192(2):396–413CrossRefzbMATHGoogle Scholar
  4. 4.
    Alvim ACF, Taillard ÉD (2013) POPMUSIC for the world location routing problem. EURO J Transp Logist 2:231–254CrossRefGoogle Scholar
  5. 5.
    Angelelli E, Mansini R, Speranza M (2010) Kernel search: a general heuristic for the multi-dimensional knapsack problem. Comput Oper Res 37(11):2017–2026MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Angelelli E, Mansini R, Speranza M (2012) Kernel search: a new heuristic framework for portfolio selection. Comput Optim Appl 51(1):345–361.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Balas E, Zemel E (1980) An algorithm for large zero-one knapsack problems. Oper Res 28(5):1130–1154MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ball MO (2011) Heuristics based on mathematical programming. Surv Oper Res Manag Sci 16(1):21–38Google Scholar
  9. 9.
    Concorde (2015) Concorde TSP solver. http://www.math.uwaterloo.ca/tsp/concorde/index.html
  10. 10.
    Fischetti M, Lodi A (2003) Local branching. Math Program B 98:23–47MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fischetti M, Polo C, Scantamburlo M (2004) A local branching heuristic for mixed-integer programs with 2-level variables, with an application to a telecommunication network design problem. Networks 44(2):61–72MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Glover F, Laguna M (1997) Tabu search. Kluwer, DordrechtCrossRefzbMATHGoogle Scholar
  13. 13.
    Hansen P, Mladenović N, Urosević D (2006) Variable neighborhood search and local branching. Comput Oper Res 33(10):3034–3045CrossRefzbMATHGoogle Scholar
  14. 14.
    Hill A, Voß S (2015) Generalized local branching heuristics and the capacitated ring tree problem. Working paper, IWI, University of HamburgGoogle Scholar
  15. 15.
    Lalla-Ruiz E, Voß S (2016) POPMUSIC as a matheuristic for the berth allocation problem. Ann Math Artif Intell 76:173–189MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lalla-Ruiz E, Voß S, Exposito-Izquierdo C, Melian-Batista B, Moreno-Vega JM (2015) A POPMUSIC-based approach for the berth allocation problem under time-dependent limitations. Ann Oper Res 1–27. doi:10.1007/s10479-015-2055-6, ISSN:1572-9338. Page online available http://dx.doi.org/10.1007/s10479-015-2055-6
  17. 17.
    Lalla-Ruiz E, Schwarze S, Voß S (2016) A matheuristic approach for the p-cable trench problem. Working paper, IWI, University of HamburgCrossRefGoogle Scholar
  18. 18.
    Laurent M, Taillard ÉD, Ertz O, Grin F, Rappo D, Roh S (2009) From point feature label placement to map labelling. In: Metaheuristic International Conference (MIC’09) Proceedings.Google Scholar
  19. 19.
    Maniezzo V, Stützle T, Voß S (eds) (2009) Matheuristics: hybridizing metaheuristics and mathematical programming. Springer, BerlinzbMATHGoogle Scholar
  20. 20.
    Ostertag A, Doerner KF, Hartl RF, Taillard ÉD, Waelti P (2009) POPMUSIC for a real-world large-scale vehicle routing problem with time windows. J Oper Res Soc 60(7):934–943CrossRefzbMATHGoogle Scholar
  21. 21.
    Pisinger D (1999) Core problems in knapsack algorithms. Oper Res 47(4):570–575MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pisinger D, Ropke S (2007) A general heuristic for vehicle routing problems. Comput Oper Res 34(8):2403–2435MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sniedovich M, Voß S (2006) The corridor method: a dynamic programming inspired metaheuristic. Control Cybern 35:551–578MathSciNetzbMATHGoogle Scholar
  24. 24.
    Taillard E, Voß S (2002) POPMUSIC—partial optimization metaheuristic under special intensification conditions. In: Ribeiro C, Hansen P (eds) Essays and surveys in metaheuristics. Kluwer, Boston, pp 613–629CrossRefGoogle Scholar
  25. 25.
    Taillard ÉD (1993) Parallel iterative search methods for vehicle routing problems. Networks 23(8):661–673CrossRefzbMATHGoogle Scholar
  26. 26.
    Taillard ÉD (2003) Heuristic methods for large centroid clustering problems. J Heuristics 9(1):51–73. Old technical report IDSIA-96-96Google Scholar
  27. 27.
    Woodruff D (1998) Proposals for chunking and tabu search. Eur J Oper Res 106:585–598CrossRefzbMATHGoogle Scholar
  28. 28.
    Yamamoto M, Camara G, Lorena L (2002) Tabu search heuristic for point-feature cartographic label placement. GeoInformatica 6:77–90CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Embedded Information SystemsHEIG-VD, University of Applied Sciences and Arts of Western SwitzerlandYverdon-les-BainsSwitzerland
  2. 2.Faculty of Business Administration, Institute of Information SystemsUniversity of HamburgHamburgGermany

Personalised recommendations