Shallow-Level Centers

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history



Shallow defect centers play a dominant role as donors and acceptors in nearly all semiconducting devices. The major features of their spectrum can be described by a quasi-hydrogen model, modified only by the dielectric constant and the effective mass of the host semiconductor. This relation yields very good results for higher excited states of a large variety of such defects, while the ground state shows substantial deviations according to the chemical individuality of the defect center. Such an individuality can be explained by considering the core potential and the deformation of the lattice after incorporating the defect.

Band anisotropies and the interaction between bands such as conduction-band valleys cause the lifting of some of the degeneracies of the quasi-hydrogen spectrum. Local stress and electric fields cause additional splitting. The dependence of levels on hydrostatic pressure can be used to identify shallow-level defects which are connected to one band only. The influence of externally applied uniaxial stress and electric or magnetic fields can be used for further identification.

Donors and acceptors can bind excitons. The binding energy sensitively depends on the effective mass ratio of electron and hole and the charge state of the impurity. For exciton binding at neutral donors and acceptors, a linear dependence from the ionization energy is found. Isoelectronic impurities can also bind excitons by attracting the electron at the core potential.


Acceptor Acceptor-bound exciton Acceptor energies Bound excitons Central-cell correction Core potential Donor Donor-acceptor pairs Donor-bound exciton Donor energies Electron spin resonance Effective-mass impurity Exciton binding energy Free-to-bound transitions Hayne’s rule Strain-induced splitting Quasi-hydrogen model Shallow acceptor Shallow donor Stark effect Two-electron transitions Two-hole transitions Rydberg energy Uniaxial strain Zeeman effect 


  1. Abarenkov IV, Heine V (1965) The model potential for positive ions. Philos Mag 12:529CrossRefADSGoogle Scholar
  2. Abragam A, Bleaney B (1976) Electron paramagnetic resonance of transition ions. Claredon, Oxford, UKGoogle Scholar
  3. Aggarwal RL, Ramdas AK (1965a) Effect of uniaxial stress on the excitation spectra of donors in silicon. Phys Rev 137:A602CrossRefADSGoogle Scholar
  4. Aggarwal RL, Ramdas AK (1965b) Optical determination of the symmetry of the ground states of group-V donors in silicon. Phys Rev 140:A1246CrossRefADSGoogle Scholar
  5. Altarelli M, Iadonisi G (1971) Donor ground states of group IV and III-V semiconductors. Nuovo Cimento B 5:21CrossRefADSGoogle Scholar
  6. Appapillai M, Heine V (1972) Solid state group tech rep 5. Cavendish Lab, Cambridge, UKGoogle Scholar
  7. Ashen DJ, Dean PJ, Hurle DTJ, Mullin JB, White AM (1975) The incorporation and characterization of acceptors in epitaxial GaAs. J Phys Chem Solid 36:1041CrossRefADSGoogle Scholar
  8. Austin BJ, Heine V, Sham LJ (1962) General theory of pseudopotentials. Phys Rev 127:276CrossRefADSzbMATHGoogle Scholar
  9. Baldereschi A (1970) Valley-orbit interaction in semiconductors. Phys Rev B 1:4673CrossRefADSGoogle Scholar
  10. Baldereschi A, Bassani F (1970) Optical absorption by excitons in a uniform magnetic field. In: Keller SP, Hensel JC, Stern F (eds) Proceedings of the 10th international conference on the physics of semiconductors, Cambridge MA, USA. National Bureau of Standards, Technical Information Service, Springfield, pp 191–196Google Scholar
  11. Baldereschi A, Hopfield JJ (1972) Binding to isoelectronic impurities in semiconductors. Phys Rev Lett 28:171CrossRefADSGoogle Scholar
  12. Baldereschi A, Lipari NO (1973) Spherical model of shallow acceptor states in semiconductors. Phys Rev B 8:2697CrossRefADSGoogle Scholar
  13. Baldereschi A, Lipari NO (1976) Interpretation of acceptor spectra in Si and Ge. In: Fumi FG (ed) Proceedings of the 13th international conference on the physics of semiconductors, Rome 1976. Tipografia Marves, Rome, pp 595–598Google Scholar
  14. Bassani GF, Celli V (1961) Energy-band structure of solids from a perturbation on the “empty lattice”. J Phys Chem Solid 20:64CrossRefADSzbMATHGoogle Scholar
  15. Bassani GF, Pastori Parravicini G (1975) Electronic states and optical transitions in solids. Pergamon, Oxford/New YorkGoogle Scholar
  16. Bassani GF, Iadosini G, Preziosi B (1969) Band structure and impurity states. Phys Rev 186:735CrossRefADSGoogle Scholar
  17. Bassani GF, Iadosini G, Preziosi B (1974) Electronic impurity levels in semiconductors. Rep Prog Phys 37:1099CrossRefADSGoogle Scholar
  18. Bebb HB (1969) Application of the quantum-defect method to optical transitions involving deep effective-mass-like impurities in semiconductors. Phys Rev 185:1116CrossRefADSGoogle Scholar
  19. Bergh AA, Dean PJ (1976) Light emitting diodes. Claredon, OxfordGoogle Scholar
  20. Bergman K, Grossmann G, Grimmeiss HG, Stavola M, Holm C, Wagner P (1987) Spin triplet states of double donors in silicon. In: Engström O (ed) Proceedings of the 18th international conference on the physics of semiconductors, Stockholm 1986. World Scientific, Singapore, pp 883–886Google Scholar
  21. Bernholc J, Pantelides ST (1977) Theory of binding energies of acceptors in semiconductors. Phys Rev B 15:4935CrossRefADSGoogle Scholar
  22. Blossey DF (1970) Wannier exciton in an electric field. I. Optical absorption by bound and continuum states. Phys Rev B 2:3976CrossRefADSGoogle Scholar
  23. Blossey DF (1971) Wannier exciton in an electric field. II. Electroabsorption in direct-band-gap solids. Phys Rev B 3:1382CrossRefADSGoogle Scholar
  24. Callaway J (1976) Quantum theory of solid state. Academic Press, New YorkGoogle Scholar
  25. Cardona M (1969a) Modulation spectroscopy. In: Seitz F, Turnbull D, Ehrenreich H (eds) Solid state physics, suppl 11. Academic, New YorkGoogle Scholar
  26. Cardona M (1969b) Optical constants of insulators: dispersion relations. In: Nudelman S, Mitra SS (eds) Optical properties of solids. Plenum Press New York, pp 137–151Google Scholar
  27. Carter AC, Skolnick MS, Stradling RA, Leotin JP, Askenazy S (1976) The Zeeman splitting of Si, S, and Te donors in GaP. In: Fumi FG (ed) Proceedings of the 13th international conference on the physics of semiconductors, Rome 1976. Tipografia Marves, Rome, pp 619–622Google Scholar
  28. Castner TG Jr (1970) Configuration mixing of subsidiary minima: corrections to the ground-state wave function for donors in silicon. Phys Rev B 2:4911CrossRefADSGoogle Scholar
  29. Cavenett BC (1981) Optically detected magnetic resonance (O.D.M.R.) investigations of recombination processes in semiconductors. Adv Phys 30:475CrossRefADSGoogle Scholar
  30. Cohen E, Sturge MD (1977) Excited states of excitons bound to nitrogen pairs in GaP. Phys Rev B 15:1039CrossRefADSGoogle Scholar
  31. Cojocari O, Popa V, Ursaki VV, Tiginyanu IM, Hartnagel HL, Daumiller I (2004) GaN Schottky multiplier diodes prepared by electroplating: a study of passivation technology. Semicond Sci Technol 19:1273CrossRefADSGoogle Scholar
  32. Condon EU, Shortley GH (1959) The theory of atomic spectra. Cambridge University Press, Cambridge, UKzbMATHGoogle Scholar
  33. Costato M, Manchinelli F, Reggiani L (1971) Anomalous behavior of shallow donor ground state levels in Ge under pressure. Solid State Commun 9:1335CrossRefADSGoogle Scholar
  34. Craford MG, Holonyak N Jr (1976) The optical properties of the nitrogen isoelectronic trap in GaAs1-xPx. In: Seraphin BO (ed) Optical properties of solids – new developments. North Holland, Amsterdam, pp 187–253Google Scholar
  35. Csavinszky P (1965) Corrections to the effective mass theory of shallow impurity states in Si and Ge. J Phys Soc Jpn 20:2027CrossRefADSGoogle Scholar
  36. Davis G, Nazaré MH (1994) The bound exciton model for isoelectronic centres in silicon. In: Heinrich H, Jantsch W (eds) Proceedings of the 17th international conference on defects of semiconductors. Mater Sci Forum 143–147. pp 105–109Google Scholar
  37. Dean PJ (1973a) Inter-impurity recombinations in semiconductors. Prog Solid State Chem 8:1CrossRefGoogle Scholar
  38. Dean PJ (1973b) Lithium donors and the binding of excitons at neutral donors and acceptors in gallium phosphide. In: Williams F (ed) Luminescence of crystals, molecules, and solutions. Plenum Press, New York, pp 538–552Google Scholar
  39. Dean PJ (1983) Excitons in semiconductors. In: Di Bartolo B (ed) Collective excitation in semiconductors. Plenum Press, New York, pp 247–315Google Scholar
  40. Dean PJ, Herbert DC (1979) Bound excitons in semiconductors. In: Cho K (ed) Excitons. Springer, Berlin, pp 55–182CrossRefGoogle Scholar
  41. Dean PJ, Cuthbert JD, Thomas DG, Lynch RT (1967) Two-electron transitions in the luminescence of excitons bound to neutral donors in gallium phosphide. Phys Rev Lett 18:122CrossRefADSGoogle Scholar
  42. Dean PJ, Cuthbert JD, Lynch RT (1969) Interimpurity recombinations involving the isoelectronic trap bismuth in gallium phosphide. Phys Rev 179:754CrossRefADSGoogle Scholar
  43. Denteneer PJH, Van de Walle CG, Pantelides ST (1989) Microscopic structure of the hydrogen-boron complex in crystalline silicon. Phys Rev B 39:10809CrossRefADSGoogle Scholar
  44. Dietz RE, Thomas DG, Hopfield JJ (1962) “Mirror” absorption and fluorescence in ZnTe. Phys Rev Lett 8:391CrossRefADSGoogle Scholar
  45. Faulkner RA (1968) Toward a theory of isoelectronic impurities in semiconductors. Phys Rev 175:991Google Scholar
  46. Faulkner RA (1969) Higher donor excited states for prolate-spheroid conduction bands: a reevaluation of silicon and germanium. Phys Rev 184:713CrossRefADSGoogle Scholar
  47. Feher G (1959) Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique. Phys Rev 114:1219CrossRefADSGoogle Scholar
  48. Feher G (1998) The development of ENDOR and other reminescences of the 1950’s. In: Eaton GR, Eaton SS, Salikov KM (eds) Foundation of modern EPR. Worlds Scientific, Singapore, pp 548–556CrossRefGoogle Scholar
  49. Freysoldt C, Grabowski BJ, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle CG (2014) First-principles calculations for point defects in solids. Rev Mod Phys 86:253CrossRefADSGoogle Scholar
  50. Fritzsche H (1962) Effect of stress on the donor wave functions in germanium. Phys Rev 125:1560CrossRefADSGoogle Scholar
  51. Gal M, Cavenett BC, Smith P (1979) New evidence for the two-electron O state in GaP. Phys Rev Lett 43:1611CrossRefADSGoogle Scholar
  52. Gel’mont BL, D’yakonov MI (1972) Acceptor levels in diamond-type semiconductors. Sov Phys Semicond 5:1905Google Scholar
  53. Goñi AR, Syassen K (1998) Optical properties of semiconductors under pressure. In: Suski T, Paul W (eds) High pressure in semiconductor physics I. Semiconductors and semimetals, vol 54. Academic Press, San Diego, pp 247–425Google Scholar
  54. Gorczyca I, Svane A, Christensen NE (1997) Calculated defect levels in GaN and AlN and their pressure coefficients. Solid State Commun 101:747CrossRefADSGoogle Scholar
  55. Grimmeiss HG (1985) Deep energy levels in semiconductors. In: Chadi JD, Harrison WA (eds) Proceedings of the 17th international conference on the physics of semiconductors, San Francisco 1984. Springer, New York, pp 589–600Google Scholar
  56. Grimmeiss HG, Janzén E (1986) Chalcogen impurities in silicon. In: Pantelides ST (ed) Deep centers in semiconductors. Gordon and Breach, New York, pp 87–146Google Scholar
  57. Grimmeiss HG, Janzén E, Skarstam B (1980) Deep sulfur-related centers in silicon. J Appl Phys 51:4212CrossRefADSGoogle Scholar
  58. Guichar GM, Sébenne C, Proix F, Balkanski M (1972) Lowering the extrinsic photoconductivity threshold of Si:P. In: Proceedings of the11th international conference on the physics of semiconductors. PWN Polish Scientific Publishers, Warsaw, pp 877–881Google Scholar
  59. Haller EE, Hansen WL (1974) High resolution Fourier transform spectroscopy of shallow acceptors in ultra-pure germanium. Solid State Commun 15:687CrossRefADSGoogle Scholar
  60. Haller EE, Hansen WL, Goulding FS (1981) Physics of ultra-pure germanium. Adv Phys 30:93CrossRefADSGoogle Scholar
  61. Halsted RE (1967) Radiative recombination in the band edge region. In: Aven M, Prener JS (eds) Physics and chemistry of II-VI compounds. North Holland, Amsterdam, pp 383–431Google Scholar
  62. Halsted RE, Aven M (1965) Photoluminescence of defect-exciton complexes in II-VI compounds. Phys Rev Lett 14:64CrossRefADSGoogle Scholar
  63. Hasegawa H (1969) Effects of high magnetic fields on electronic states in semiconductors – the Rydberg series and the Landau levels. In: Haidemenakis ED (ed) Physics of solids in intense magnetic fields. Plenum Press, New York, pp 246–270Google Scholar
  64. Haug A (1972) Theoretical solid state physics. Pergamon, OxfordGoogle Scholar
  65. Hayes W, Stoneham AM (1984) Defects and defect processes in nonmetallic solids. Wiley, New YorkGoogle Scholar
  66. Haynes JR (1960) Experimental proof of the existence of a new electronic complex in silicon. Phys Rev Lett 4:361CrossRefADSGoogle Scholar
  67. Herzberg G (1937) Atomic spectra and atomic structure. Dover, New YorkGoogle Scholar
  68. Herring C, Vogt E (1956) Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys Rev 101:944Google Scholar
  69. Hopfield JJ (1967) Radiative recombination at shallow centers. In: Thomas DG (ed) Proceedings of international conference on II-VI semiconducting compounds. Benjamin, New York, p 786Google Scholar
  70. Hopfield JJ, Thomas DG, Lynch RT (1966) Isoelectronic donors and acceptors. Phys Rev Lett 17:312CrossRefADSGoogle Scholar
  71. Horii K, Nisida Y (1970) Identification of 4p0 and 4p±1 of germanium donor from the Zeeman spectra. J Physical Soc Jpn 29:798CrossRefADSGoogle Scholar
  72. Jancu J-M, Scholz R, Beltram F, Bassani F (1998) Empirical spds* tight-binding calculation for cubic semiconductors: general method and material parameters. Phys Rev B 57:6493CrossRefADSGoogle Scholar
  73. Jansen RW, Sankey OF (1987) Trends in the energy levels and total energies of s p – valence interstitials in compound semiconductors – an ab initio tight-binding study for GaAs. In: Engström O (ed) Proceedings of the 18th international conference on the physics of semiconductors, Stockholm 1986. World Scientific, Singapore, pp 813–816Google Scholar
  74. Kaplan R (1970) Far-infrared magnetooptical studies of semiconductors using Fourier spectroscopy and photoconductivity techniques. In: Haidemenakis D (ed) Optical properties of solids. Gordon & Breach, London, pp 301–330Google Scholar
  75. Kirkman RF, Stradling RA, Lin-Chung PJ (1978) An infrared study of the shallow acceptor states in GaAs. J Phys C 11:419CrossRefADSGoogle Scholar
  76. Kohn W (1957) Shallow impurity states in silicon and germanium. In: Seitz F, Turnbull D (eds) Solid state physics, vol 5. Academic Press, New York, pp 257–320Google Scholar
  77. Kopylov AA, Pikhtin AN (1978) Shallow impurity states and the free exciton binding energy in gallium phosphide. Solid State Commun 26:735CrossRefADSGoogle Scholar
  78. Kosicki BB, Paul W (1966) Evidence for quasilocalized states associated with high-energy conduction-band minima in semiconductors, particularly Se-doped GaSb. Phys Rev Lett 17:246CrossRefADSGoogle Scholar
  79. Kudlek G, Presser N, Pohl UW, Gutowski J, Lilja J, Kuusisto E, Imai K, Pessa M, Hingerl K, Sitter A (1992) Exciton complexes in ZnSe layers: a tool for probing the strain distribution. J Cryst Growth 117:309CrossRefADSGoogle Scholar
  80. Lampert MA (1958) Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys Rev Lett 1:450CrossRefADSGoogle Scholar
  81. Lancester G (1966) Electron spin resonance in semiconductors. Hilger & Watts, LondonGoogle Scholar
  82. Lipari NO, Baldereschi A (1978) Interpretation of acceptor spectra in semiconductors. Solid State Commun 25:665CrossRefADSGoogle Scholar
  83. Lund A, Shiotani M, Shimada S (2011) Principles and applications of ESR spectroscopy. Springer, Heidelberg/New YorkCrossRefGoogle Scholar
  84. Luttinger JM (1956) Quantum theory of cyclotron resonance in semiconductors: general theory. Phys Rev 102:1030CrossRefADSzbMATHGoogle Scholar
  85. Luttinger JM, Kohn W (1955) Motion of electrons and holes in perturbed periodic fields. Phys Rev 97:869CrossRefADSzbMATHGoogle Scholar
  86. Markham JJ (1966) F-centers in alkali halides. Academic Press, New YorkGoogle Scholar
  87. McMurray RE Jr (1985) Spectroscopy of positively charged multiple acceptors. Solid State Commun 53:1127CrossRefADSGoogle Scholar
  88. Merz JL (1968) Isoelectronic oxygen trap in ZnTe. Phys Rev 176:961CrossRefADSGoogle Scholar
  89. Merz JL, Nassau K, Shiever JW (1973) Pair spectra and shallow acceptors in ZnSe. Phys Rev B 8:1444CrossRefADSGoogle Scholar
  90. Moore WJ (1971) Magnetic field effects on the excitation spectra of neutral group II double acceptors in germanium. J Phys Chem Solid 32:93CrossRefADSGoogle Scholar
  91. Morita A, Nara H (1966) Chemical shifts of shallow donors levels in silicon. In: Hatoyama GM (ed) Proceedings of the 8th international conference on the physics of semiconductors, Kyoto, 1966, J Phys Soc Jpn Suppl 21, pp 234–238Google Scholar
  92. Narita S (1985) Effects of uniaxial stress and magnetic field of D-center in germanium and silicon. Solid State Commun 53:1115CrossRefADSGoogle Scholar
  93. Onton A (1971) Donor-electron transitions between states associated with the X1c and X3c conduction-band minima in GaP. Phys Rev B 4:4449CrossRefADSGoogle Scholar
  94. Onton A, Fisher P, Ramdas AK (1967) Spectroscopic investigation of group-III acceptor states in silicon. Phys Rev 163:686CrossRefADSGoogle Scholar
  95. Onton A, Yacoby Y, Chicotka RJ (1972) Direct optical observation of the subsidiary X1c conduction band and its donor levels in InP. Phys Rev Lett 28:966CrossRefADSGoogle Scholar
  96. Pajot B (2009) Optical absorption of impurities and defects in semiconducting crystals, I. Hydrogen-like Centres. Springer, BerlinGoogle Scholar
  97. Pantelides ST (1975) Theory of impurities in semiconductors. In: Queisser HJ (ed) Festkörperprobleme/Advances in solid state physics, vol 15. Vieweg, Braunschweig, pp 149–181Google Scholar
  98. Pantelides ST (1978) The electronic structure of impurities and other point defects in semiconductors. Rev Mod Phys 50:797CrossRefADSGoogle Scholar
  99. Pantelides ST (ed) (1986) Deep centers in semiconductors. Gordon and Breach, New YorkGoogle Scholar
  100. Pantelides ST (1987) The effect of hydrogen on shallow dopants in crystalline silicon. In: Engström O (ed) Proceedings of the 18th international conference on the physics of semiconductors, Stockholm 1986. World Scientific, Singapore, pp 987–990Google Scholar
  101. Pantelides ST, Sah CT (1974) Theory of localized states in semiconductors. II. The pseudo impurity theory application to shallow and deep donors in silicon. Phys Rev B 10:638CrossRefADSGoogle Scholar
  102. Phillips JC, Kleinman L (1959) New method for calculating wave functions in crystals and molecules. Phys Rev 116:287CrossRefADSzbMATHGoogle Scholar
  103. Pohl UW, Busse W (1989) Probability tables for small clusters of impurity atoms in sc, bcc and fcc lattices assuming long range interaction. J Chem Phys 90:6877CrossRefADSGoogle Scholar
  104. Pohl UW, Wiesmann D, Kudlek GH, Litzenburger B, Hoffmann A (1996) Magneto-optical investigation of the shallow lithium acceptor in zinc selenide. J Cryst Growth 159:414CrossRefADSGoogle Scholar
  105. Pollak FH (1965) Effect of uniaxial compression on impurity conduction in p-germanium. Phys Rev 138:A618CrossRefADSGoogle Scholar
  106. Pollmann J (1976) Exciton ground-state in strongly anisotropic crystals. Solid State Commun 19:361CrossRefADSGoogle Scholar
  107. Poole CP Jr (1983) Electron spin resonance – a comprehensive treatise on experimental techniques, 2nd edn. Wiley, New YorkGoogle Scholar
  108. Rashba EI, Gurgenishvilli GE (1962) To the theory of the edge absorption in semiconductors. Sov Phys Solid State 4:759Google Scholar
  109. Reiss H, Fuller CS, Morin FJ (1956) Chemical interactions among defects in germanium and silicon. Bell Sys Tech J 35:535CrossRefGoogle Scholar
  110. Ren SY, Dow JD, Wolford DJ (1982) Pressure dependence of deep levels in GaAs. Phys Rev B 25:7661CrossRefADSGoogle Scholar
  111. Reuszer JH, Fisher P (1964) An optical determination of the ground-state splittings of group V impurities in germanium. Phys Rev 135:A1125CrossRefADSGoogle Scholar
  112. Rodriguez S, Fisher P, Barra F (1972) Spectroscopic study of the symmetries and deformation-potential constants of singly ionized zinc in germanium, theory. Phys Rev B 5:2219CrossRefADSGoogle Scholar
  113. Roessler DM (1970) Luminescence in tellurium-doped cadmium sulfide. J Appl Phys 41:4589CrossRefADSGoogle Scholar
  114. Rotenberg M, Stein J (1969) Use of asymptotically correct wave function for three-body Rayleigh-Ritz calculations. Phys Rev 182:1CrossRefADSGoogle Scholar
  115. Sah CT, Pantelides ST (1972) Theory of impurity states in semiconductors. Solid State Commun 11:1713CrossRefADSGoogle Scholar
  116. Sak J (1971) Perturbation theory for a bound polaron. Phys Rev B 3:3356CrossRefADSGoogle Scholar
  117. Schechter D (1975) Pseudopotential theory of shallow-donor ground states II. Phys Rev B 11:5043CrossRefADSGoogle Scholar
  118. Schneider J (1967) Electron spin resonance of defect centers in II-VI cemiconductors. In: Thomas DG (ed) II-VI semiconducting compounds. Benjamin, New York, p 40Google Scholar
  119. Schneider J (1982) ESR of defects in III–V compounds. MRS Proc 14:225CrossRefGoogle Scholar
  120. Shinada M, Sugano S (1966) Interband optical transitions in extremely anisotropic semiconductors. I. Bound and unbound exciton absorption. J Physical Soc Jpn 21:1936CrossRefADSGoogle Scholar
  121. Skettrup T, Suffczynski M, Gorzkowski W (1971) Properties of excitons bound to ionized donors. Phys Rev B 4:512CrossRefADSGoogle Scholar
  122. Soepangkat HP, Fisher P, Rodriguez S (1972) g-factors of boron in germanium. Phys Lett A 39:379CrossRefADSGoogle Scholar
  123. Sommerfeld A (1950) Atombau und Spektrallinien, vol I. Vieweg, Braunschweig (Atomic structure and spectral lines, in German)Google Scholar
  124. Spaeth J-M (1986) Application of optically detected magnetic resonance to the characterization of point defects in semiconductors. In: von Bardeleben HJ (ed) Proceedings of the 14th international conference on defects in semiconductors. Mater Sci Forum 10–12. Trans Tech Publications, Switzerland, pp 505–514Google Scholar
  125. Stark J (1914) Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien, I Quereffekt. Ann d Phys 43:965 (Observations on the effect of an electric field on spectral lines, I transversal effect, in German)Google Scholar
  126. Stark J, Wendt G (1914) Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien, II Längseffekt. Ann d Phys 43:983 (Observations on the effect of an electric field on spectral lines, II longitudinal effect, in German)Google Scholar
  127. Stoneham AM (1975) Theory of defects in solids. Claredon, Oxford, UKzbMATHGoogle Scholar
  128. Stoneham AM (1986) Hot topics: theory. In: von Bardeleben HJ (ed) Proceedings of the 14th international conference on defects in semiconductors. Mater Sci Forum 10–12. Trans Tech Publications, Switzerland, pp 9–19Google Scholar
  129. Taguchi T, Ray B (1983) Point defects in II–VI compounds. Progr Cryst Growth Charact 6:103CrossRefGoogle Scholar
  130. Thewalt MLW, Labrie D, Timusk T (1985) The far infrared absorption spectra of bound excitons in silicon. Solid State Commun 53:1049CrossRefADSGoogle Scholar
  131. Thomas DG, Hopfield JJ (1962) Optical properties of bound exciton complexes in cadmium sulfide. Phys Rev 128:2135CrossRefADSGoogle Scholar
  132. Thomas DG, Hopfield JJ (1966) Isoelectronic traps due to nitrogen in gallium phosphide. Phys Rev 150:680CrossRefADSGoogle Scholar
  133. Thomas DG, Gershenzon M, Trumbore FA (1964) Pair spectra and “edge” emission in gallium phosphide. Phys Rev 133:A269CrossRefADSGoogle Scholar
  134. Thomas DG, Hopfield JJ, Frosch CJ (1965) Isoelectronic traps due to nitrogen in gallium phosphide. Phys Rev Lett 15:857CrossRefADSGoogle Scholar
  135. Torres VJB, Oberg S, Jones R (1997) Theory of nitrogen-hydrogen complexes in GaP. In: Davies G, Nazaré MH (eds) Proceedings of the 19th international conference on defect in Semiconductors. Mater Sci Forum 258–263. Trans Tech Publications, Switzerland, pp 1063–1067Google Scholar
  136. Trumbore FA, Gershenzon M, Thomas DG (1966) Luminescence due to the isoelectronic substitution of bismuth for phosphorus in gallium phosphide. Appl Phys Lett 9:4CrossRefADSGoogle Scholar
  137. Ulbrich RG (1978) Low density photoexcitation phenomena in semiconductors: aspects of theory and experiment. Solid State Electron 21:51CrossRefADSGoogle Scholar
  138. van Vleck JH (1932) The theory of electric and magnetic susceptibilities. Claredon, Oxford, UKzbMATHGoogle Scholar
  139. Vul’ AY, Bir GL, Shmartsev YV (1971) Donor states of sulfur in gallium antimonide. Sov Phys Semicond 4:2005Google Scholar
  140. Wagner P, Holm C, Sirtl E, Oeder R, Zulehner W (1984) Chalcogens as point defects in silicon. In: Grosse P (ed) Festkörperprobleme/Advances in solid state physics, vol 24. Vieweg, Braunschweig, pp 191–228Google Scholar
  141. Watkins GD (1977) Lattice defects in II-VI compounds. In: Urli NB, Corbett JW (eds) Proceedings of international conference on radiation effects in semiconductors, vol 31, Institute of physics conference series. Institute of Physics, Bristol, p 95Google Scholar
  142. White JJ (1967) Effects of external and internal electric fields on the boron acceptor states in silicon. Can J Phys 45:2695CrossRefADSGoogle Scholar
  143. Williams F (1968) Donor-acceptor pairs in semiconductors. Phys Status Solidi 25:493CrossRefGoogle Scholar
  144. Wilson DK, Feher G (1961) Electron spin resonance experiments on donors in silicon. III. Investigation of excited states by the application of uniaxial stress and their importance in relaxation processes. Phys Rev 124:1068CrossRefADSGoogle Scholar
  145. Wolford DJ (1987) Electronic states in semiconductors under high pressures. In: Engström O (ed) Proceedings of the 18th international conference on the physics of semiconductors, Stockholm 1986. World Scientific, Singapore, pp 1115–1123Google Scholar
  146. Wolford DJ, Hsu WY, Dow JD, Streetman BG (1979) Nitrogen trap in the semiconductor alloys GaAs1−xPx and AlxGa1−xAs. J Lumin 18–19:863CrossRefGoogle Scholar
  147. Zeeman P (1897) Doublets and triplets in the spectrum produced by external magnetic forces. Philos Mag 44:55; and: Philos Mag 44:255CrossRefGoogle Scholar
  148. Zimmermann H, Boyn R, Lehr MU, Schulz H-J, Rudolph P, Kornac J-T (1994) The Zeeman effect on bound-exciton states of indium-related complex centres in CdTe. Semicond Sci Technol 9:1598CrossRefADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations