Crystal Defects

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Latest version View entry history



Semiconducting properties of most interest are predominantly caused by crystal defects. They are classified into point, line, and planar defects. Some defects are beneficial, such as donors, acceptors, or luminescence centers. These defects determine the desired electronic and optical properties of the semiconductor. Other defects promote nonradiative carrier recombination, carrier trapping, or excessive carrier scattering and are detrimental to device performance.

Native point defects and associates of these defects are formed at elevated temperature and may be frozen-in with decreasing temperature. Their creation is interrelated – among each other and also to the presence of extrinsic (impurity) defects – and governed by the conservation of particles and quasi-neutrality. The mobility of defects is provided by various diffusion mechanisms and affected by their charge. Line defects involve rows of atoms. Most important are edge and screw dislocations, which affect crystal growth and accommodate strain in semiconductors. Dislocations are characterized by their Burgers vector and its angle to the dislocation line, and their mobility is provided by glide and climb processes. Planar defects comprise stacking faults, grain and twin boundaries, inversion-domain boundaries, and interfaces between different semiconductors or between a semiconductor and a metal.


Acceptor Antisite defect Antiphase domain Brouwer approximation Burgers vector Crystal defects Compensation Defect-formation energy Diffusion mechanisms Donor Edge dislocations Fick diffusion Frenkel defects Grain boundary Intrinsic defect Interstitial Inversion-domain boundary Jog Kink Line defects Native defect Partial dislocations Point defects Twin boundary Screw dislocation Stacking fault Polytype Quasi-neutrality Schottky disorder Vacancy 


  1. Akasaka T, Yamamoto H (2014) Nucleus and spiral growth mechanisms of nitride semiconductors in metalorganic vapor phase epitaxy. Jpn J Appl Phys 53:100201CrossRefADSGoogle Scholar
  2. Ammerlaan CAJ, Watkins GD (1972) Electron-paramagnetic-resonance detection of optically induced divacancy alignment in silicon. Phys Rev B5:3988CrossRefADSGoogle Scholar
  3. Ayers JE (2007) Heteroepitaxy of semiconductors. CRC Press Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  4. Bauer S, Rosenauer A, Link P, Kuhn W, Zweck J, Gebhardt W (1993) Misfit dislocations in epitaxial ZnTe/GaAs (001) studied by HRTEM. Ultramicroscopy 51:221CrossRefGoogle Scholar
  5. Berg A, Brough I, Evans JH, Lorimer G, Peaker AR (1992) Recombination-generation behaviour of decorated defects in silicon. Semicond Sci Technol 7:A263CrossRefADSGoogle Scholar
  6. Bourgoin J, Corbett JW (1972) A new mechanism for interstitial migration. Phys Lett A 38:135CrossRefADSGoogle Scholar
  7. Bourgoin J, Lannoo M (1983) Point defects in semiconductors II: experimental aspects. Springer, BerlinCrossRefGoogle Scholar
  8. Bragg WL, Burgers WG (1940) Slip in single crystals: discussion. Proc Phys Soc London 52:54CrossRefGoogle Scholar
  9. Branchu S, Pailloux F, Garem H, Rabier J, Demenet JL (1999) Partial dislocation source in InSb: a new mechanism. Phys Stat Sol A 171:59CrossRefADSGoogle Scholar
  10. Brochard S, Rabier J, Grilhé J (1998) Nucleation of partial dislocations from a surface-step in semiconductors: a first approach of the mobility effect. Eur Phys J Appl Phys 2:99CrossRefADSGoogle Scholar
  11. Brooks H (1963) Binding in metals. Trans Metall Soc AIME 227:546Google Scholar
  12. Brouwer G (1954) A general asymmetric solution of reaction equations common in solid state chemistry. Philips Res Rep 9:366Google Scholar
  13. Burgers JM (1939) Betrachtungen über die auf Grund von Verlagerungen im regulären Krystallgitter auftretenden Spannungsfelder. I. Untersuchung der geometrischen Beziehungen bei den Verschiebungen in einfachen Krystallen unter dem Einfluss von Spannungen. Proc Kon Ned Acad Wetenschap. 42:293; II. Lösungen der Elastizitätsgleichungen für anisotrope Substanzen mit regulärer Symmetrie. ibid 42:378 (Consideration of stress fields due to shifts in a regular crystal lattice; I Investigation on the geometric relation of displacements in simple crystals under the influence of stress; II Solutions of elasticity equations for anisotropic matter with regular symmetry; in German)Google Scholar
  14. Car R, Kelly PJ, Oshiyama A, Pantelides ST (1984) Microscopic theory of atomic diffusion mechanisms in silicon. Phys Rev Lett 52:1814CrossRefADSGoogle Scholar
  15. Car R, Kelly PJ, Oshiyama A, Pantelides ST (1985) Microscopic theory of impurity-defect reactions and impurity diffusion in silicon. Phys Rev Lett 54:360CrossRefADSGoogle Scholar
  16. Chen TP, Chen LJ, Huang TS, Guo YD (1992) Transmission electron microscope investigation of dislocation loops in Si-doped GaAs crystals. Semicond Sci Technol 7:A300CrossRefADSGoogle Scholar
  17. Cottrell AH (1958) Dislocations and plastic flow in crystals. Oxford University Press, LondonzbMATHGoogle Scholar
  18. Cottrell AH (1964) Theory of crystal dislocations. Gordon & Breach, New YorkzbMATHGoogle Scholar
  19. de Kock AJR (1980) Crystal growth of bulk crystals: purification, doping and defects. In: Moss TS, Keller SP (eds) Handbook of semiconductors, vol 3. North-Holland, Amsterdam, pp 247–333Google Scholar
  20. Flynn CP (1972) Point defects and diffusion. Claredon Press, OxfordGoogle Scholar
  21. Frank FC (1949a) The influence of dislocations on crystal growth. Discuss Faraday Soc 5:48CrossRefGoogle Scholar
  22. Frank FC (1949b) Sessile dislocations. Proc Phys Soc A 62:202CrossRefADSGoogle Scholar
  23. Frank FC, Read WT Jr (1950) Multiplication processes for slow moving dislocations. Phys Rev 79:722CrossRefADSGoogle Scholar
  24. Frank W (1981) Self-interstitials and vacancies in elemental semiconductors between absolute zero and the temperature of melting. In Treusch J (ed), Festkörperprobleme/Advances in Solid State Physics, vol 26. Vieweg, Braunschweig pp 221–242Google Scholar
  25. Frenkel JI (1926) Über die Wärmebewegung in festen und flüssigen Körpern. Z Phys 35:652 (On the thermal motion in solids and liquids, in German)CrossRefADSzbMATHGoogle Scholar
  26. Friedel J (1964) Dislocations. Addison-Wesley, ReadingzbMATHGoogle Scholar
  27. Friedel J (1966) Theory of crystal defects. In: Gruber B (ed) Proc summer school Hrazany, Czechoslovakia. Academic Press, New York, p 415Google Scholar
  28. Gösele UM (1986) Point defects and diffusion mechanisms in crystalline semiconductors, vol 26, Festkörperprobleme/Advances in Solid State Physics. Vieweg, Braunschweig, p 89Google Scholar
  29. Gutakovskii AK, Fedina LI, Aseev AL (1995) High resolution electron microscopy of semiconductor interfaces. Phys Stat Sol A 150:127CrossRefADSGoogle Scholar
  30. Hagemark KI (1976) Frozen-in native defects in semiconductor compounds. J Chem Phys Sol 37:461CrossRefADSGoogle Scholar
  31. Hao M, Sugahara T, Sato H, Morishima Y, Naoi Y, Romano LT, Sakai S (1998) Study of threading dislocations in wurtzite GaN films grown on sapphire by metalorganic chemical vapor deposition. Jpn J Appl Phys 37:L291CrossRefADSGoogle Scholar
  32. Hayes W, Stoneham AM (1985) Defects and defect processes in nonmetallic solids. Wiley, New YorkGoogle Scholar
  33. Heggie M, Jones R (1983) Microscopy of semiconducting materials. Inst Phys Conf Ser 67:45Google Scholar
  34. Heydenreich J, Blumtritt H, Gleichmann R, Johansen H (1981) Combined application of SEM(EBIC) and TEM for the investigation of the electrical activity of crystal defects in silicon. In: Becker P, Johari O (eds) Scanning electron microscopy I. SEM Inc AMF O’Hare, Chicago, p 351Google Scholar
  35. Hirsch PB (1985) Dislocations in semiconductors. In: Loretto MH (ed) Dislocations and properties of real materials. Institute of Metals, London, p 333Google Scholar
  36. Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Wiley, New YorkzbMATHGoogle Scholar
  37. Hull D (1975) Introduction to dislocations. Pergamon Press, OxfordGoogle Scholar
  38. Inoue M, Suzuki K, Amasuga H, Nakamura M, Mera Y, Takeuchi S, Maeda K (1998) Reliable image processing that can extract an atomically-resolved line shape of partial dislocations in semiconductors from plan-view high-resolution electron microscopic images. Ultramicroscopy 75:5CrossRefGoogle Scholar
  39. Jansen RW, Sankey OF (1989) Theory of relative native- and impurity-defect abundances in compound semiconductors and the factors that influence them. Phys Rev B 39:3192CrossRefADSGoogle Scholar
  40. Jones R (1981) Reconstructed dislocations in covalently bonded semiconductors. In: Cullis AG, Joy DC (eds) Microscopy of semiconducting materials, vol 60:45, Inst Phys Conf Ser. IOP Publishing, BristolGoogle Scholar
  41. Justo JF, Bulatov VV, Yip S (1997) Core effects in dislocation intersection. Scr Mater 36:707CrossRefGoogle Scholar
  42. Kimerling LC, Patel JR (1979) Defect states associated with dislocations in silicon. Appl Phys Lett 34:73CrossRefADSGoogle Scholar
  43. Kléman M (1985) Disclinations. In: Loretto MH (ed) Dislocations and properties of real materials. Institute of Metals, London, pp 51–66Google Scholar
  44. Kröger FA (1964) The chemistry of imperfect crystals. North Holland Publ, AmsterdamCrossRefGoogle Scholar
  45. Kveder VV, Osipyan YA, Schröter W, Zoth G (1982) On the energy spectrum of dislocations in silicon. Phys Stat Sol A 72:701CrossRefADSGoogle Scholar
  46. Labusch R, Schröter W (1980) Electrical properties of dislocations in semiconductors. In: Nabarro FRN (ed) Dislocations in solids, vol 5. North Holland Publ, Amsterdam, pp 127–191Google Scholar
  47. Landsberg PT, Canagaratna SG (1984) The grand partition function in defect statistics. Phys Stat Sol B 126:141CrossRefADSGoogle Scholar
  48. Lang DV, Grimmeiss HG, Meijer E, Jaros M (1980) Complex nature of gold-related deep levels in silicon. Phys Rev B 22:3917CrossRefADSGoogle Scholar
  49. Lannoo M, Bourgoin J (1981) Point defects in semiconductors. Springer, BerlinGoogle Scholar
  50. Li SS (2007) Semiconductor physical electronics, 2nd edn. Plenum Press, New YorkGoogle Scholar
  51. Lorenz MR (1967) Thermodynamics, materials preparation and crystal growth. In: Aven M, Prener JS (eds) Physics and chemistry of II–VI compounds. North Holland Publishing, Amsterdam, p 75Google Scholar
  52. Mergel D, Labusch R (1982) Optical excitations of dislocation states in silicon. Phys Stat Sol A 69:151CrossRefADSGoogle Scholar
  53. Nabarro FRN (1967) Theory of crystal dislocations. Claredon Press, OxfordGoogle Scholar
  54. Nichols CS, Van de Walle CG, Pantelides ST (1989) Mechanisms of equilibrium and nonequilibrium diffusion of dopants in silicon. Phys Rev Lett 62:1049CrossRefADSGoogle Scholar
  55. Ning XJ, Huvey N (1996) Observation of twins formed by gliding of successive surface-nucleated partial dislocations in silicon. Philos Mag Lett 74:241CrossRefADSGoogle Scholar
  56. Orowan E (1934) Zur Kristallplastizität III, Über den Mechanismus des Gleitvorganges. Z Phys 89:634 (On the plasticity of crystals III, On the mechanism of gliding, in German)CrossRefADSGoogle Scholar
  57. Osip’yan YA (1983) Electrical properties of dislocations in plastically deformed float zone silicon. J Phys Colloq (Orsay Fr) 44(C4, Suppl 9):103Google Scholar
  58. Osipiyan YA, Smirnova IS (1968) Perfect dislocations in the wurtzite lattice. Phys Stat Sol 30:19CrossRefADSGoogle Scholar
  59. Pandey K (1986) Diffusion without vacancies or interstitials: a new concerted exchange mechanism. In: von Baredeleben HJ (ed) Defects in semiconductors, vol 10–12, Mater Sci Forum. Trans Tech Publishing, Aedermannsdorf, p 121Google Scholar
  60. Pantelides ST (1987) The effect of hydrogen on shallow dopants in crystalline silicon. In: Engström O (ed) Proceedings 18th international conference on physics of semiconductors. World Scientific Publishing, Singapore, p 987Google Scholar
  61. Patel JR, Chaudhuri AR (1966) Charged impurity effects on the deformation of dislocation-free germanium. Phys Rev 143:601CrossRefADSGoogle Scholar
  62. Petrenko VF, Whitworth RW (1980) Charged dislocations and the plastic deformation of II–VI compounds. Philos Mag A 41:681CrossRefADSGoogle Scholar
  63. Pirouz P (1989) On twinning and polymorphic transformations in compound semiconductors. Scr Metall 23:401CrossRefGoogle Scholar
  64. Pohl UW (2013) Epitaxy of semiconductors. Springer, BerlinCrossRefGoogle Scholar
  65. Read WT Jr (1953) Dislocations in crystals. McGraw-Hill, New YorkzbMATHGoogle Scholar
  66. Rösner H, Kübel C, Ivanisenko Y, Kurmanaeva L, Divinski SV, Peterlechner M, Wilde G (2011) Strain mapping of a triple junction in nanocrystalline Pd. Acta Mater 59:7380CrossRefGoogle Scholar
  67. Schottky W (1935) Über den Mechanismus der Ionenbewegung in festen Elektrolyten. Z Phys Chem B 29:335 (On the mechanism of ion motion in solid electrolytes, in German)Google Scholar
  68. Schottky W, Stöckmann F (1954) Vergleichende Betrachtungen über die Natur der Störstellen in Halbleitern und Phosphoren. Halbleiterprobleme 1:80 (Comparative considerations on the nature of impurities in semiconductors and phosphors, in German)CrossRefADSGoogle Scholar
  69. Seeger K (1997) Semiconductor physics: an introduction, 6th edn. Springer, New YorkCrossRefzbMATHGoogle Scholar
  70. Stolwijk NA, Schuster B, Hölzl J, Mehrer H, Frank W (1983) Diffusion and solubility of gold in silicon. Physica B+C 116:335CrossRefADSGoogle Scholar
  71. Suezawa M, Sumino K (1983) Photoluminescence from dislocated silicon crystals. J Phys Colloq (Orsay Fr) 44(C4, Suppl 9):133Google Scholar
  72. Talwar DN, Vandevyver M, Zigone M (1980) Impurity induced Raman scattering spectra in zincblende-type crystals: application to mixed indium pnictides. J Phys C 13:3775CrossRefADSGoogle Scholar
  73. Tan TY, Gösele U, Morehead FF (1983) On the nature of point defects and the effect of oxidation on substitutional dopant diffusion in silicon. Appl Phys A 31:97CrossRefADSGoogle Scholar
  74. Taylor GI (1934) The mechanism of plastic deformation of crystals, part I, theoretical. Proc R Soc London A 145:362CrossRefADSzbMATHGoogle Scholar
  75. Troxell JR, Watkins GD (1980) Interstitial boron in silicon: a negative-U system. Phys Rev B 22:921CrossRefADSGoogle Scholar
  76. Troxell JR, Chatterjee AP, Watkins GD, Kimerling LC (1979) Recombination-enhanced migration of interstitial aluminum in silicon. Phys Rev B 19:5336CrossRefADSGoogle Scholar
  77. Van de Walle CG, Denteneer PJH, Bar-Yam Y, Pantelides ST (1989) Theory of hydrogen diffusion and reactions in crystalline silicon. Phys Rev B 39:10791CrossRefGoogle Scholar
  78. van Vechten JA (1980) A simple man’s view of the thermochemistry of semiconductors. In: Moss TS, Keller SP (eds) Handbook of semiconductors, vol 3. North Holland Publishing, Amsterdam, pp 1–111Google Scholar
  79. Watkins GD (1974) Lattice defects in semiconductors. Inst Phys Conf Ser 23:1Google Scholar
  80. Watkins GD (1986) The lattice vacancy in silicon. In: Pantelides ST (ed) Deep centers in semiconductors. Gordon and Breach, New York, p 147Google Scholar
  81. Weber ER (1983) Transition metals in silicon. Appl Phys A 30:1CrossRefADSGoogle Scholar
  82. Weber ER, Alexander H (1983) Deep level defects in plastically deformed silicon. J Phys Colloq (Orsay Fr) 44(C4):C4-319–C4-328Google Scholar
  83. Weertman J, Weertman JR (1960) Elementary dislocation theory. Macmillan, New YorkzbMATHGoogle Scholar
  84. Wessel K, Alexander H (1977) On the mobility of partial dislocations in silicon. Philos Mag 35:1523CrossRefADSGoogle Scholar
  85. Yeh C-Y, Lu ZW, Zunger A (1992) Zinc-blende – wurtzite polytypism in semiconductors. Phys Rev B 46:10086CrossRefADSGoogle Scholar
  86. You JH, Johnson HT (2009) Effect of dislocations on the electrical and optical properties of GaAs and GaN. In: Ehrenreich H, Spaepen F (eds) Solid state physics, vol 61. Academic Press, New York, pp 143–261Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations