Optical Coherence Tomography in a Needle Format

  • Dirk Lorenser
  • Robert A. McLaughlin
  • David D. Sampson
Reference work entry

Abstract

In this chapter, we review the technology and applications of needle probes for optical coherence tomography (OCT). Needle probes are miniaturized fiber-optic probes that can be mounted inside hypodermic needles, allowing them to be inserted deep into the body during OCT imaging. This overcomes the very limited imaging depth of OCT of only 2–3 mm in biological tissue, enabling access to deep-tissue locations that are beyond the reach of free-space optical scan heads or catheters. This chapter provides an in-depth review of the current state-of-the art in needle probe technology, including optical design and fabrication, scan mechanisms (including three-dimensional scanning), and integration into OCT systems. It also provides an overview of emerging applications of this fascinating new imaging tool in areas such as cancer diagnosis, pulmonary imaging, imaging of the eye and imaging of the brain. Finally, two case studies are presented, illustrating needle-based OCT imaging in breast cancer and lungs.

Keywords

Breast cancer Deep-tissue imaging Fiber-optic probes Imaging needle Interstitial imaging Lung imaging Microscope-in-a-needle 

References

  1. 1.
    J.G. Fujimoto, Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21(11), 1361–1367 (2003)CrossRefGoogle Scholar
  2. 2.
    X. Li, C. Chudoba, T. Ko, C. Pitris, J.G. Fujimoto, Imaging needle for optical coherence tomography. Opt. Lett. 25(20), 1520–1522 (2000)CrossRefADSGoogle Scholar
  3. 3.
    R.A. McLaughlin, B.C. Quirk, A. Curatolo, R.W. Kirk, L. Scolaro, D. Lorenser, P.D. Robbins, B.A. Wood, C.M. Saunders, D.D. Sampson, Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results. IEEE J. Sel. Top. Quantum Electron. 18(3), 1184–1191 (2012)CrossRefGoogle Scholar
  4. 4.
    N.V. Iftimia, B.E. Bouma, M.B. Pitman, B. Goldberg, J. Bressner, G.J. Tearney, A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance. Rev. Sci. Instrum. 76(6), 064301–064306 (2005)CrossRefADSGoogle Scholar
  5. 5.
    R.A. McLaughlin, X. Yang, B.C. Quirk, D. Lorenser, R.W. Kirk, P.B. Noble, D.D. Sampson, Static and dynamic imaging of alveoli using optical coherence tomography needle probes. J. Appl. Physiol. 113(6), 967–974 (2012)CrossRefGoogle Scholar
  6. 6.
    K. Tan, M. Shishkov, A. Chee, M. Applegate, B. Bouma, M. Suter, Flexible transbronchial optical frequency domain imaging smart needle for biopsy guidance. Biomed. Opt. Express 3(8), 1947–1954 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Han, M.V. Sarunic, J. Wu, M. Humayun, C. Yang, Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection. J. Biomed. Opt. 13(2), 020505 (2008)CrossRefADSGoogle Scholar
  8. 8.
    M. Zhao, Y. Huang, J.U. Kang, Sapphire ball lens-based fiber probe for common-path optical coherence tomography and its applications in corneal and retinal imaging. Opt. Lett. 37(23), 4835–4837 (2012)CrossRefADSGoogle Scholar
  9. 9.
    M.S. Jafri, S. Farhang, R.S. Tang, N. Desai, P.S. Fishman, R.G. Rohwer, C.M. Tang, J.M. Schmitt, Optical coherence tomography in the diagnosis and treatment of neurological disorders. J. Biomed. Opt. 10(5), 051603 (2005)Google Scholar
  10. 10.
    C. Sun, K.K. Lee, B. Vuong, M.D. Cusimano, A. Brukson, A. Mauro, N. Munce, B.K. Courtney, B.A. Standish, V.X. Yang, Intraoperative handheld optical coherence tomography forward-viewing probe: physical performance and preliminary animal imaging. Biomed. Opt. Express 3(6), 1404 (2012)CrossRefGoogle Scholar
  11. 11.
    L. Scolaro, D. Lorenser, R.A. McLaughlin, B.C. Quirk, R.W. Kirk, D.D. Sampson, High-sensitivity anastigmatic imaging needle for optical coherence tomography. Opt. Lett. 37(24), 5247–5249 (2012)CrossRefADSGoogle Scholar
  12. 12.
    V.X.D. Yang, Y.X. Mao, N. Munce, B. Standish, W. Kucharczyk, N.E. Marcon, B.C. Wilson, I.A. Vitkin, Interstitial Doppler optical coherence tomography. Opt. Lett. 30(14), 1791–1793 (2005)CrossRefADSGoogle Scholar
  13. 13.
    W. Emkey, C. Jack, Analysis and evaluation of graded-index fiber lenses. J. Lightwave Technol. 5(9), 1156–1164 (1987)CrossRefADSGoogle Scholar
  14. 14.
    W.A. Reed, M.F. Yan, M.J. Schnitzer, Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry. Opt. Lett. 27(20), 1794–1796 (2002)CrossRefADSGoogle Scholar
  15. 15.
    Y. Mao, S. Chang, S. Sherif, C. Flueraru, Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging. Appl. Opt. 46(23), 5887–5894 (2007)CrossRefADSGoogle Scholar
  16. 16.
    D. Lorenser, X. Yang, R.W. Kirk, B.C. Quirk, R.A. McLaughlin, D.D. Sampson, Ultrathin side-viewing needle probe for optical coherence tomography. Opt. Lett. 36(19), 3894–3896 (2011)CrossRefADSGoogle Scholar
  17. 17.
    Y. Wu, J. Xi, L. Huo, J. Padvorac, E. Shin, S.A. Giday, A.A. Lennon, M.F. Canto, J.F. Hwang, X.F. Li, Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging. IEEE J. Sel. Top. Quantum Electron. 16(4), 863–869 (2010)CrossRefGoogle Scholar
  18. 18.
    H.Y. Choi, S.Y. Ryu, J. Na, B.H. Lee, I.-B. Sohn, Y.-C. Noh, J. Lee, Single-body lensed photonic crystal fibers as side-viewing probes for optical imaging systems. Opt. Lett. 33(1), 34–36 (2008)CrossRefADSGoogle Scholar
  19. 19.
    G.J. Tearney, S.A. Boppart, B.E. Bouma, M.E. Brezinski, N.J. Weissman, J.F. Southern, J.G. Fujimoto, Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt. Lett. 21(7), 543–545 (1996)CrossRefADSGoogle Scholar
  20. 20.
    D.C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, J.G. Fujimoto, Three-dimensional endomicroscopy using optical coherence tomography. Nat. Photonics 1(12), 709–716 (2007)CrossRefADSGoogle Scholar
  21. 21.
    D. Lorenser, X. Yang, D.D. Sampson, Ultrathin fiber probes with extended depth of focus for optical coherence tomography. Opt. Lett. 37(10), 1616–1618 (2012)CrossRefADSGoogle Scholar
  22. 22.
    D. Lorenser, X. Yang, D.D. Sampson, Accurate modeling and design of graded-index fiber probes for optical coherence tomography using the beam propagation method. IEEE Photonics J. 5(2), 3900015 (2013)Google Scholar
  23. 23.
    P.D. Woolliams, R.A. Ferguson, C. Hart, A. Grimwood, P.H. Tomlins, Spatially deconvolved optical coherence tomography. Appl. Opt. 49(11), 2014–2021 (2010)CrossRefADSGoogle Scholar
  24. 24.
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinsin, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178–1181 (1991)CrossRefADSGoogle Scholar
  25. 25.
    R.A. Leitgeb, M. Villiger, A.H. Bachmann, L. Steinmann, T. Lasser, Extended focus depth for Fourier domain optical coherence microscopy. Opt. Lett. 31(16), 2450–2452 (2006)CrossRefADSGoogle Scholar
  26. 26.
    M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, UK, 1999)CrossRefGoogle Scholar
  27. 27.
    A.E. Siegman, Lasers (University Science, Mill Valley, 1986)Google Scholar
  28. 28.
    H. Kogelnik, T. Li, Laser beams and resonators. Proc. IEEE 54(10), 1312–1329 (1966)CrossRefGoogle Scholar
  29. 29.
    D. Marcuse, Gaussian approximation of the fundamental modes of graded-index fibers. J. Opt. Soc. Am. 68(1), 103–109 (1978)CrossRefADSGoogle Scholar
  30. 30.
    W. Jung, W.A. Benalcazar, A. Ahmad, U. Sharma, H. Tu, S.A. Boppart, Numerical analysis of gradient index lens based optical coherence tomography imaging probes. J. Biomed. Opt. 15(6), 066027 (2010)CrossRefADSGoogle Scholar
  31. 31.
    W.A. Benalcazar, W. Jung, S.A. Boppart, Aberration characterization for the optimal design of high-resolution endoscopic optical coherence tomography catheters. Opt. Lett. 37(6), 1100–1102 (2012)CrossRefADSGoogle Scholar
  32. 32.
    X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, D. D. Sampson, Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe. Biomed. Opt. Express 5(1), 136–148 (2014)Google Scholar
  33. 33.
    J. Van Roey, J. Van der Donk, P.E. Lagasse, Beam-propagation method: analysis and assessment. J. Opt. Soc. Am. 71(7), 803–810 (1981)CrossRefADSGoogle Scholar
  34. 34.
    J.A. Fleck, J.R. Morris, M.D. Feit, Time-dependent propagation of high energy laser beams through the atmosphere. Appl. Phys. A Mater. Sci. Process. 10(2), 129–160 (1976)Google Scholar
  35. 35.
    E.A. Sziklas, A.E. Siegman, Mode calculations in unstable resonators with flowing saturable gain. 2: fast Fourier transform method. Appl. Opt. 14(8), 1874–1889 (1975)CrossRefADSGoogle Scholar
  36. 36.
    M.D. Feit, J.A. Fleck Jr., Light propagation in graded-index optical fibers. Appl. Opt. 17(24), 3990–3998 (1978)CrossRefADSGoogle Scholar
  37. 37.
    A. Ishikawa, M. Izutsu, T. Sueta, Beam propagation method analysis of optical waveguide lenses. Appl. Opt. 29(34), 5064–5068 (1990)CrossRefADSGoogle Scholar
  38. 38.
    A. Carnevale, U.C. Paek, Empirical evaluation of profile variations in an MCVD optical waveguide fiber using modal structure analysis. Bell Syst. Tech. J. 62(7), 1937–1954 (1983)CrossRefGoogle Scholar
  39. 39.
    D. Mazzarese, G.E. Oulundsen III, F.T. McMahon II, M.T. Owsiany, Method of collapsing a tube for an optical fiber preform. U.S. Patent No. 6,718,800Google Scholar
  40. 40.
    R. Olshansky, D.B. Keck, Pulse broadening in graded-index optical fibers. Appl. Opt. 15(2), 483–491 (1976)CrossRefADSGoogle Scholar
  41. 41.
    D. Marcuse, Calculation of bandwidth from index profiles of optical fibers. 1: theory. Appl. Opt. 18(12), 2073–2080 (1979)CrossRefADSGoogle Scholar
  42. 42.
    G.E. Peterson, A. Carnevale, U.C. Paek, J.W. Fleming, Numerical calculation of optimum alpha for a germania-doped silica lightguide. Bell Syst. Tech. J. 60(4), 455–470 (1981)CrossRefGoogle Scholar
  43. 43.
    D. Lorenser, B.C. Quirk, M. Auger, W.-J. Madore, R.W. Kirk, N. Godbout, D.D. Sampson, C. Boudoux, R.A. McLaughlin, Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography. Opt. Lett. 38(3), 266–268 (2013)CrossRefADSGoogle Scholar
  44. 44.
    E.J. Seibel, Q.Y.J. Smithwick, Unique features of optical scanning, single fiber endoscopy. Lasers Surg. Med. 30(3), 177–183 (2002)CrossRefGoogle Scholar
  45. 45.
    X. Liu, M.J. Cobb, Y. Chen, M.B. Kimmey, X. Li, Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography. Opt. Lett. 29(15), 1763–1765 (2004)CrossRefADSGoogle Scholar
  46. 46.
    N.R. Munce, A. Mariampillai, B.A. Standish, M. Pop, K.J. Anderson, G.Y. Liu, T. Luk, B.K. Courtney, G.A. Wright, I.A. Vitkin, Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter. Opt. Lett. 33(7), 657–659 (2008)CrossRefADSGoogle Scholar
  47. 47.
    Y. Pan, H. Xie, G.K. Fedder, Endoscopic optical coherence tomography based on a microelectromechanical mirror. Opt. Lett. 26(24), 1966–1968 (2001)CrossRefADSGoogle Scholar
  48. 48.
    J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, C. Yang, Paired-angle-rotation scanning optical coherence tomography forward-imaging probe. Opt. Lett. 31(9), 1265–1267 (2006)CrossRefADSGoogle Scholar
  49. 49.
    J. Sun, S. Guo, L. Wu, L. Liu, S.W. Choe, B.S. Sorg, H. Xie, 3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror. Opt. Express 18(12), 12065–12075 (2010)CrossRefADSGoogle Scholar
  50. 50.
    L. Liu, L. Wu, J. Sun, E. Lin, H. Xie, Miniature endoscopic optical coherence tomography probe employing a two-axis microelectromechanical scanning mirror with through-silicon vias. J. Biomed. Opt. 16(2), 026006 (2011)CrossRefADSGoogle Scholar
  51. 51.
    J.C. Jung, M.J. Schnitzer, Multiphoton endoscopy. Opt. Lett. 28(11), 902–904 (2003)CrossRefADSGoogle Scholar
  52. 52.
    R.S. Pillai, D. Lorenser, D.D. Sampson, Deep-tissue access with confocal fluorescence microendoscopy through hypodermic needles. Opt. Express 19(8), 7213–7221 (2011)CrossRefADSGoogle Scholar
  53. 53.
    C.P. Liang, J. Wierwille, T. Moreira, G. Schwartzbauer, M.S. Jafri, C.M. Tang, Y. Chen, A forward-imaging needle-type OCT probe for image guided stereotactic procedures. Opt. Express 19(27), 26283–26294 (2011)CrossRefADSGoogle Scholar
  54. 54.
    H. Li, B.A. Standish, A. Mariampillai, N.R. Munce, Y. Mao, S. Chiu, N.E. Marcon, B.C. Wilson, A. Vitkin, V.X.D. Yang, Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy. Lasers Surg. Med. 38(8), 754–761 (2006)CrossRefGoogle Scholar
  55. 55.
    Y. Huang, X. Liu, C. Song, J.U. Kang, Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention. Biomed. Opt. Express 3(12), 3105–3118 (2012)CrossRefGoogle Scholar
  56. 56.
    B.Y. Yeo, R.A. McLaughlin, R.W. Kirk, D.D. Sampson, Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system. Biomed. Opt. Express 3(7), 1565–1578 (2012)CrossRefGoogle Scholar
  57. 57.
    Y.J. Xie, T. Bonin, S. Loffler, G. Huttmann, V. Tronnier, U.G. Hofmann, Coronal in vivo forward-imaging of rat brain morphology with an ultra-small optical coherence tomography fiber probe. Phys. Med. Biol. 58(3), 555–568 (2013)CrossRefGoogle Scholar
  58. 58.
    K.M. Kennedy, B.F. Kennedy, R.A. McLaughlin, D.D. Sampson, Needle optical coherence elastography for tissue boundary detection. Opt. Lett. 37(12), 2310–2312 (2012)CrossRefADSGoogle Scholar
  59. 59.
    A.M. Zysk, S.G. Adie, J.J. Armstrong, M.S. Leigh, A. Paduch, D.D. Sampson, F.T. Nguyen, S.A. Boppart, Needle-based refractive index measurement using low-coherence interferometry. Opt. Lett. 32(4), 385–387 (2007)CrossRefADSGoogle Scholar
  60. 60.
    A.M. Zysk, D.L. Marks, D.Y. Liu, S.A. Boppart, Needle-based reflection refractometry of scattering samples using coherence-gated detection. Opt. Express 15(8), 4787–4794 (2007)CrossRefADSGoogle Scholar
  61. 61.
    B.C. Quirk, R.A. McLaughlin, A. Curatolo, R.W. Kirk, P.B. Noble, D.D. Sampson, In situ imaging of lung alveoli with an optical coherence tomography needle probe. J. Biomed. Opt. 16(3), 036009 (2011)CrossRefADSGoogle Scholar
  62. 62.
    E. Swanson, C.L. Petersen, E. McNamara, R.B. Lamport, D.L Kelly, Ultra-small optical probes, imaging optics, and methods for using same. United States Patent U.S. Patent No. 6,445,939Google Scholar
  63. 63.
    Y. Li, E. Wolf, Three-dimensional intensity distribution near the focus in systems of different Fresnel numbers. J. Opt. Soc. Am. A 1(8), 801–808 (1984)CrossRefADSGoogle Scholar
  64. 64.
    D. Yelin, B.E. Bouma, S.H. Yun, G.J. Tearney, Double-clad fiber for endoscopy. Opt. Lett. 29(20), 2408–2410 (2004)CrossRefADSGoogle Scholar
  65. 65.
    S.Y. Ryu, H.Y. Choi, J. Na, E.S. Choi, B.H. Lee, Combined system of optical coherence tomography and fluorescence spectroscopy based on double-cladding fiber. Opt. Lett. 33(20), 2347–2349 (2008)CrossRefADSGoogle Scholar
  66. 66.
    L. Wang, H.Y. Choi, Y. Jung, B.H. Lee, K.T. Kim, Optical probe based on double-clad optical fiber for fluorescence spectroscopy. Opt. Express 15(26), 17681–17689 (2007)CrossRefADSGoogle Scholar
  67. 67.
    H. Yoo, J.W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J.R. McCarthy, V. Ntziachristos, B.E. Bouma, F.A. Jaffer, Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat. Med. 17(12), 1680–1685 (2011)CrossRefGoogle Scholar
  68. 68.
    J. Mavadia, J. Xi, Y. Chen, X. Li, An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging. Biomed. Opt. Express 3(11), 2851–2859 (2012)CrossRefGoogle Scholar
  69. 69.
    S. Lemire-Renaud, M. Rivard, M. Strupler, D. Morneau, F. Verpillat, X. Daxhelet, N. Godbout, C. Boudoux, Double-clad fiber coupler for endoscopy. Opt. Express 18(10), 9755–9764 (2010)CrossRefADSGoogle Scholar
  70. 70.
    J.H. McLeod, The axicon: a new type of optical element. J. Opt. Soc. Am. 44(8), 592 (1954)CrossRefADSGoogle Scholar
  71. 71.
    Z. Ding, H. Ren, Y. Zhao, J.S. Nelson, Z. Chen, High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt. Lett. 27(4), 243–245 (2002)CrossRefADSGoogle Scholar
  72. 72.
    K.S. Lee, J.P. Rolland, Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range. Opt. Lett. 33(15), 1696–1698 (2008)CrossRefADSGoogle Scholar
  73. 73.
    K.M. Tan, M. Mazilu, T.H. Chow, W.M. Lee, K. Taguchi, B.K. Ng, W. Sibbett, C.S. Herrington, C.T.A. Brown, K. Dholakia, In-fiber common-path optical coherence tomography using a conical-tip fiber. Opt. Express 17(4), 2375–2384 (2009)CrossRefADSGoogle Scholar
  74. 74.
    M. Choma, M. Sarunic, C. Yang, J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11(18), 2183–2189 (2003)CrossRefADSGoogle Scholar
  75. 75.
    U. Sharma, N.M. Fried, J.U. Kang, All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis. IEEE Sel. Top. Quantum Electron. 11(4), 799–805 (2005)CrossRefGoogle Scholar
  76. 76.
    A.R. Tumlinson, J.K. Barton, B. Považay, H. Sattman, A. Unterhuber, R.A. Leitgeb, W. Drexler, Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon. Opt. Express 14(5), 1878–1887 (2006)CrossRefADSGoogle Scholar
  77. 77.
    D.D. Sampson, T.R. Hillman, Optical coherence tomography, in Lasers and Current Optical Techniques in Biology, vol. 4. Comprehensive Series in Photochemical and Photobiological Sciences, ed. by G. Palumbo, R. Pratesi (The Royal Society of Chemistry, Cambridge, UK, 2004), pp. 481–571Google Scholar
  78. 78.
    R.A. McLaughlin, D. Lorenser, D.D. Sampson, Needle Probes in Optical Coherence Tomography, in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring, and Material Science, ed. By V.V. Tuchin (Springer, New York, 2013)Google Scholar
  79. 79.
    R.C. Haskell, D. Liao, A.E. Pivonka, T.L. Bell, B.R. Haberle, B.M. Hoeling, D.C. Petersen, Role of beat noise in limiting the sensitivity of optical coherence tomography. J. Opt. Soc. Am. A 23(11), 2747–2755 (2006)CrossRefADSGoogle Scholar
  80. 80.
    R. Leitgeb, C. Hitzenberger, A. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 11(8), 889–894 (2003)CrossRefADSGoogle Scholar
  81. 81.
    R. Tripathi, N. Nassif, J.S. Nelson, B.H. Park, J.F. de Boer, Spectral shaping for non-Gaussian source spectra in optical coherence tomography. Opt. Lett. 27(6), 406–408 (2002)CrossRefADSGoogle Scholar
  82. 82.
    S. Yun, G. Tearney, J. de Boer, N. Iftimia, B. Bouma, High-speed optical frequency-domain imaging. Opt. Express 11(22), 2953–2963 (2003)CrossRefADSGoogle Scholar
  83. 83.
    A.M. Rollins, J.A. Izatt, Optimal interferometer designs for optical coherence tomography. Opt. Lett. 24(21), 1484–1486 (1999)CrossRefADSGoogle Scholar
  84. 84.
    B.A. Standish, X. Jin, J. Smolen, A. Mariampillai, N.R. Munce, B.C. Wilson, I.A. Vitkin, V.X.D. Yang, Interstitial Doppler optical coherence tomography monitors microvascular changes during photodynamic therapy in a Dunning prostate model under varying treatment conditions. J. Biomed. Opt. 12(3), 034022 (2007)Google Scholar
  85. 85.
    B.A. Standish, K.K.C. Lee, X. Jin, A. Mariampillai, N.R. Munce, M.F.G. Wood, B.C. Wilson, I.A. Vitkin, V.X.D. Yang, Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study. Cancer Res. 68(23), 9987–9995 (2008)CrossRefGoogle Scholar
  86. 86.
    J.C. Jung, A.D. Mehta, E. Aksay, R. Stepnoski, M.J. Schnitzer, In vivo mammalian brain imaging using one-and two-photon fluorescence microendoscopy. J. Neurophysiol. 92(5), 3121–3133 (2004)CrossRefGoogle Scholar
  87. 87.
    Y. Kienast, L. von Baumgarten, M. Fuhrmann, W.E.F. Klinkert, R. Goldbrunner, J. Herms, F. Winkler, Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16(1), 116–122 (2010)CrossRefGoogle Scholar
  88. 88.
    M.S. Jafri, R. Tang, C.M. Tang, Optical coherence tomography guided neurosurgical procedures in small rodents. J. Neurosci. Methods 176(2), 85–95 (2009)CrossRefGoogle Scholar
  89. 89.
    L.P. Hariri, M. Villiger, M.B. Applegate, M. Mino-Kenudson, E.J. Mark, B.E. Bouma, M.J. Suter, Seeing beyond the bronchoscope to increase the diagnostic yield of bronchoscopic biopsy. Am. J. Respir. Crit. Care Med. 187(2), 125–129 (2013)CrossRefGoogle Scholar
  90. 90.
    W.C. Kuo, J. Kim, N.D. Shemonski, E.J. Chaney, D.R. Spillman, S.A. Boppart, Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system. Biomed. Opt. Express 3(6), 1149–1161 (2012)CrossRefGoogle Scholar
  91. 91.
    M.E. Llewellyn, R.P.J. Barretto, S.L. Delp, M.J. Schnitzer, Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature 454(7205), 784–788 (2008)ADSGoogle Scholar
  92. 92.
    M. Mujat, R.D. Ferguson, D.X. Hammer, C. Gittins, N. Iftimia, Automated algorithm for breast tissue differentiation in optical coherence tomography. J. Biomed. Opt. 14(3), 034040 (2009)CrossRefADSGoogle Scholar
  93. 93.
    A. Curatolo, R.A. McLaughlin, B.C. Quirk, R.W. Kirk, A.G. Bourke, B.A. Wood, P.D. Robbins, C.M. Saunders, D.D. Sampson, Ultrasound-guided optical coherence tomography needle probe for the assessment of breast cancer tumor margins. Am. J. Roentgenol. 199(4), W520–W522 (2012)CrossRefGoogle Scholar
  94. 94.
    R.A. McLaughlin, L. Scolaro, P. Robbins, S. Hamza, C. Saunders, D.D. Sampson, Imaging of human lymph nodes using optical coherence tomography: potential for staging cancer. Cancer Res. 70(7), 2579–2584 (2010)CrossRefGoogle Scholar
  95. 95.
    American Cancer Society, Global cancer facts & figures, vol. 861811 (American Cancer Society, Atlanta, 2011)Google Scholar
  96. 96.
    R. Siegel, D. Naishadham, A. Jemal, Cancer statistics, 2013. CA Cancer J. Clin. 63(1), 11–30 (2013)CrossRefGoogle Scholar
  97. 97.
    X. Du, D.H. Freeman Jr., D.A. Syblik, What drove changes in the use of breast conserving surgery since the early 1980s? The role of the clinical trial, celebrity action and an NIH consensus statement. Breast Cancer Res. Treat. 62(1), 71–79 (2000)CrossRefGoogle Scholar
  98. 98.
    A.C. Neuschatz, T. DiPetrillo, M. Steinhoff, H. Safaii, M. Yunes, M. Landa, M. Chung, B. Cady, D.E. Wazer, The value of breast lumpectomy margin assessment as a predictor of residual tumor burden in ductal carcinoma in situ of the breast. Cancer 94(7), 1917–1924 (2002)CrossRefGoogle Scholar
  99. 99.
    M.F. Dillon, A.D.K. Hill, C.M. Quinn, E.W. McDermott, N. O’Higgins, A pathologic assessment of adequate margin status in breast-conserving therapy. Ann. Surg. Oncol. 13(3), 333–339 (2006)CrossRefGoogle Scholar
  100. 100.
    P.-L. Hsiung, D.R. Phatak, Y. Chen, A.D. Aguirre, J.G. Fujimoto, J.L. Connolly, Benign and malignant lesions in the human breast depicted with ultrahigh resolution and three-dimensional optical coherence tomography. Radiology 244(3), 865–874 (2007)CrossRefGoogle Scholar
  101. 101.
    F.T. Nguyen, A.M. Zysk, E.J. Chaney, J.G. Kotynek, U.J. Oliphant, F.J. Bellafiore, K.M. Rowland, P.A. Johnson, S.A. Boppart, Intraoperative evaluation of breast tumor margins with optical coherence tomography. Cancer Res. 69(22), 8790–8796 (2009)CrossRefGoogle Scholar
  102. 102.
    C. Zhou, D.W. Cohen, Y. Wang, H.-C. Lee, A.E. Mondelblatt, T.-H. Tsai, A.D. Aguirre, J.G. Fujimoto, J.L. Connolly, Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues. Cancer Res. 70(24), 10071–10079 (2010)CrossRefGoogle Scholar
  103. 103.
    A.M. Zysk, S.A. Boppart, Computational methods for analysis of human breast tumor tissue in optical coherence tomography images. J. Biomed. Opt. 11(5), 054015 (2006)CrossRefADSGoogle Scholar
  104. 104.
    P.J. Barnes, Chronic obstructive pulmonary disease. N. Engl. J. Med. 343(4), 269–280 (2000)CrossRefGoogle Scholar
  105. 105.
    N. Khalil, R. O’Connor, Idiopathic pulmonary fibrosis: current understanding of the pathogenesis and the status of treatment. Can. Med. Assoc. J. 171(2), 153–160 (2004)CrossRefGoogle Scholar
  106. 106.
    E.P. Trulock, L.B. Edwards, D.O. Taylor, M.M. Boucek, B.M. Keck, M.I. Hertz, Registry of the International Society for Heart and Lung Transplantation: twenty-second official adult lung and heart-lung transplant report–2005. J. Heart Lung Transplant. 24(8), 956–967 (2005)CrossRefGoogle Scholar
  107. 107.
    S.A. Boppart, B.E. Bouma, C. Pitris, G.J. Tearney, J.G. Fujimoto, Forward-imaging instruments for optical coherence tomography. Opt. Lett. 22(21), 1618–1620 (1997)CrossRefADSGoogle Scholar
  108. 108.
    N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, M. Brenner, Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura. J. Thorac. Cardiovasc. Surg. 129(3), 615–622 (2005)CrossRefGoogle Scholar
  109. 109.
    J. Bickenbach, R. Dembinski, M. Czaplik, S. Meissner, A. Tabuchi, M. Mertens, L. Knels, W. Schroeder, P. Pelosi, E. Koch, W.M. Kuebler, R. Rossaint, R. Kuhlen, Comparison of two in vivo microscopy techniques to visualize alveolar mechanics. J. Clin. Monit. Comput. 23(5), 323–332 (2009)CrossRefGoogle Scholar
  110. 110.
    M. Mertens, A. Tabuchi, S. Meissner, A. Krueger, K. Schirrmann, U. Kertzscher, A.R. Pries, A.S. Slutsky, E. Koch, W.M. Kuebler, Alveolar dynamics in acute lung injury: heterogeneous distension rather than cyclic opening and collapse. Crit. Care Med. 37(9), 2604–2611 (2009)CrossRefGoogle Scholar
  111. 111.
    S. Meissner, L. Knels, C. Schnabel, T. Koch, E. Koch, Three-dimensional Fourier domain optical coherence tomography in vivo imaging of alveolar tissue in the intact thorax using the parietal pleura as a window. J. Biomed. Opt. 15(1), 016030 (2010)CrossRefADSGoogle Scholar
  112. 112.
    J.P. Williamson, R.A. McLaughlin, W.J. Noffsinger, A.L. James, V.A. Baker, A. Curatolo, J.J. Armstrong, A. Regli, K.L. Shepherd, G.B. Marks, D.D. Sampson, D.R. Hillman, P.R. Eastwood, Elastic properties of the central airways in obstructive lung diseases measured using anatomical optical coherence tomography. Am. J. Respir. Crit. Care Med. 183(5), 612–619 (2011)CrossRefGoogle Scholar
  113. 113.
    C. Sun, B. Standish, V.X.D. Yang, Optical coherence elastography: current status and future applications. J. Biomed. Opt. 16(4), 043001 (2011)CrossRefADSGoogle Scholar
  114. 114.
    B.F. Kennedy, T.R. Hillman, R.A. McLaughlin, B.C. Quirk, D.D. Sampson, In vivo dynamic optical coherence elastography using a ring actuator. Opt. Express 17(24), 21762–21772 (2009)CrossRefADSGoogle Scholar
  115. 115.
    Liu, Linbo, Cheng Liu, Wong Chee Howe, C. J. R. Sheppard, Nanguang Chen. Binary-phase spatial filter for real-time swept-source optical coherence microscopy. Optics Letters 32(16), 2375–2377 (2007)Google Scholar
  116. 116.
    Lorenser, Dirk, C. Christian Singe, Andrea Curatolo, David D. Sampson, Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography. Opt. Lett. 39(3), 548–551 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dirk Lorenser
    • 1
  • Robert A. McLaughlin
    • 1
  • David D. Sampson
    • 1
    • 2
  1. 1.Optical+Biomedical Engineering LaboratorySchool of Electrical, Electronic and Computer Engineering, The University of Western AustraliaCrawleyAustralia
  2. 2.Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaCrawleyAustralia

Personalised recommendations