Optical Coherence Elastography

  • Brendan F. Kennedy
  • Kelsey M. Kennedy
  • Amy L. Oldenburg
  • Steven G. Adie
  • Stephen A. Boppart
  • David D. Sampson

Abstract

The mechanical properties of tissue are pivotal in its function and behavior, and are often modified by disease. From the nano- to the macro-scale, many tools have been developed to measure tissue mechanical properties, both to understand the contribution of mechanics in the origin of disease and to improve diagnosis. Optical coherence elastography is applicable to the intermediate scale, between that of cells and whole organs, which is critical in the progression of many diseases and not widely studied to date. In optical coherence elastography, a mechanical load is imparted to a tissue and the resulting deformation is measured using optical coherence tomography. The deformation is used to deduce a mechanical parameter, e.g., Young’s modulus, which is mapped into an image, known as an elastogram. In this chapter, we review the development of optical coherence elastography and report on the latest developments. We provide a focus on the underlying principles and assumptions, techniques to measure deformation, loading mechanisms, imaging probes and modeling, including the inverse elasticity problem.

Keywords

Elastography Optical elastography Tissue mechanics Biomechanics Cell mechanics Soft tissue 

Notes

Acknowledgments

BFK, KMK, and DDS acknowledge funding from the Australian Research Council, the National Health and Medical Research Council, the Raine Medical Research Foundation, and the University of Western Australia. They thank their colleagues and coworkers Prof Mark Bush, Mr Lixin Chin, Dr Chris Ford, and Dr Robert McLaughlin.

References

  1. 1.
    Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer, New York, 1981)CrossRefGoogle Scholar
  2. 2.
    K.J. Parker, M.M. Doyley, D.J. Rubens, Imaging the elastic properties of tissue: the 20 year perspective. Phys. Med. Biol. 56, R1 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, X. Li, Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 13, 111–134 (1991)CrossRefGoogle Scholar
  4. 4.
    R. Muthupillai, D.J. Lomas, P.J. Rossman, J.F. Greenleaf, A. Manduca, R.L. Ehman, Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269, 1854–1857 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    B.S. Garra, E.I. Cespedes, J. Ophir, S.R. Spratt, R.A. Zuurbier, C.M. Magnant, M.F. Pennanen, Elastography of breast lesions: initial clinical results. Radiology 202, 79–86 (1997)CrossRefGoogle Scholar
  6. 6.
    J. Foucher, E. Chanteloup, J. Vergniol, L. Castéra, B. Le Bail, X. Adhoute, J. Bertet, P. Couzigou, V. de Lédinghen, Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study. Gut 55, 403–408 (2006)CrossRefGoogle Scholar
  7. 7.
    D.L. Cochlin, R.H. Ganatra, D.F.R. Griffiths, Elastography in the detection of prostatic cancer. Clin. Radiol. 57, 1014–1020 (2002)CrossRefGoogle Scholar
  8. 8.
    S. Wojcinski, A. Farrokh, S. Weber, A. Thomas, T. Fischer, T. Slowinski, W. Schmidtand, F. Degenhardt, Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS – US classification system with sonoelastography. Ultraschall Med. 31, 484–491 (2010)CrossRefGoogle Scholar
  9. 9.
    J.M. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue. Opt. Express 3, 199–211 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    D.D. Duncan, S.J. Kirkpatrick, Processing algorithms for tracking speckle shifts in optical elastography of biological tissues. J. Biomed. Opt. 6, 418–426 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    S.J. Kirkpatrick, R.K. Wang, D.D. Duncan, M. Kulesz-Martin, K. Lee, Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography. Opt. Express 14, 9770–9779 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    K. Daoudi, A.C. Boccara, E. Bossy, Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography. Appl. Phys. Lett. 94, 154103 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    D.S. Elson, R. Li, C. Dunsby, R. Eckersley, M.X. Tang, Ultrasound-mediated optical tomography: a review of current methods. J. R. Soc. Interface Focus 1, 632–648 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Li, K.D. Mohan, W.W. Sanders, A.L. Oldenburg, Toward soft-tissue elastography using digital holography to monitor surface acoustic waves. J. Biomed. Opt. 16, 116005–116005 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    K.D. Mohan, A.L. Oldenburg, Elastography of soft materials and tissues by holographic imaging of surface acoustic waves. Opt. Express 20, 18887–18897 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    W. Michael Lai, D. Rubin, E. Krempl, Introduction to Continuum Mechanics (Butterworth-Heinemann, Oxford, 2010)Google Scholar
  17. 17.
    J.F. Greenleaf, M. Fatemi, M. Insana, Selected methods for imaging elastic properties of biological tissues. Annu. Rev. Biomed. Eng. 5, 57–78 (2003)CrossRefGoogle Scholar
  18. 18.
    K.J. Parker, L.S. Taylor, S. Gracewski, D.J. Rubens, A unified view of imaging the elastic properties of tissue. J. Acoust. Soc. Am. 117, 2705–2712 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    B.F. Kennedy, T.R. Hillman, R.A. McLaughlin, B.C. Quirk, D.D. Sampson, In vivo dynamic optical coherence elastography using a ring actuator. Opt. Express 17, 21762–21772 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    S.J. Kirkpatrick, D.D. Duncan, Optical assessment of tissue mechanics, in Handbook of Optical Biomedical Diagnostics, ed. by V.V. Tuchin (SPIE-The International Society for Optical Engineering, Bellingham, 2002), pp. 1037–1084Google Scholar
  21. 21.
    S. Abbas, B. Jonathan, L. Chris, B.P. Donald, Measuring the elastic modulus of ex vivo small tissue samples. Phys. Med. Biol. 48, 2183 (2003)CrossRefGoogle Scholar
  22. 22.
    T.A. Krouskop, T.M. Wheeler, F. Kallel, B.S. Garra, T. Hall, Elastic moduli of breast and prostate tissues under compression. Ultrason. Imaging 20, 260–274 (1998)CrossRefGoogle Scholar
  23. 23.
    X. Liang, M. Orescanin, K.S. Toohey, M.F. Insana, S.A. Boppart, Acoustomotive optical coherence elastography for measuring material mechanical properties. Opt. Lett. 34, 2894–2896 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    X. Liang, S.A. Boppart, Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Trans. Biomed. Eng. 57, 953–959 (2010)CrossRefGoogle Scholar
  25. 25.
    R. Manapuram, S. Aglyamov, F.M. Menodiado, M. Mashiatulla, S. Wang, S.A. Baranov, J. Li, S. Emelianov, K.V. Larin, Estimation of shear wave velocity in gelatin phantoms utilizing PhS-SSOCT. Laser Phys. 22, 1439–1444 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    M. Razani, A. Mariampillai, C. Sun, T.W.H. Luk, V.X.D. Yang, M.C. Kolios, Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms. Biomed. Opt. Express 3, 972–980 (2012)CrossRefGoogle Scholar
  27. 27.
    A. Curatolo, B.F. Kennedy, D.D. Sampson, T.R. Hillman, Speckle in optical coherence tomography, in Advanced Biophotonics: Tissue Optical Sectioning, ed. by R.K. Wang, V.V. Tuchin (Taylor & Francis, London, 2013)Google Scholar
  28. 28.
    E. Archibald, A.E. Ennos, P.A. Taylor, A laser speckle interferometer for the detection of surface movements and vibrations, in Optical Instruments and Techniques, ed. by J.H. Dickson (Oriel, Newcastle upon Tyne, 1969), p. 265Google Scholar
  29. 29.
    J.A. Leendertz, Interferometric displacement measurement on scattering surfaces utilizing speckle effect. J. Phys. E Sci. Instrum. 3, 214 (1970)ADSCrossRefGoogle Scholar
  30. 30.
    R. Chan, A. Chau, W. Karl, S. Nadkarni, A. Khalil, N. Iftimia, M. Shishkov, G. Tearney, M. Kaazempur-Mofrad, B. Bouma, OCT-based arterial elastography: robust estimation exploiting tissue biomechanics. Opt. Express 12, 4558–4572 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    J. Rogowska, N. Patel, J. Fujimoto, M. Brezinski, Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues. Heart 90, 556–562 (2004)CrossRefGoogle Scholar
  32. 32.
    F.M. Hendriks, D. Brokken, C.W. Oomens, D.L. Bader, F.P. Baaijens, The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments. Med. Eng. Phys. 28, 259–266 (2006)CrossRefGoogle Scholar
  33. 33.
    S.J. Kirkpatrick, R.K. Wang, D.D. Duncan, OCT-based elastography for large and small deformations. Opt. Express 14, 11585–11597 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    H.J. Ko, W. Tan, R. Stack, S.A. Boppart, Optical coherence elastography of engineered and developing tissue. Tissue Eng. 12, 63–73 (2006)CrossRefGoogle Scholar
  35. 35.
    D. Duncan, S. Kirkpatrick, Performance analysis of a maximum-likelihood speckle motion estimator. Opt. Express 10, 927–941 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    B.F. Kennedy, T.R. Hillman, A. Curatolo, D.D. Sampson, Speckle reduction in optical coherence tomography by strain compounding. Opt. Lett. 35, 2445–2447 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    J. Meunier, Tissue motion assessment from 3D echographic speckle tracking. Phys. Med. Biol. 43, 1241 (1998)CrossRefGoogle Scholar
  38. 38.
    S. Gahagnon, Y. Mofid, G. Josse, F. Ossant, Skin anisotropy in vivo and initial natural stress effect: a quantitative study using high-frequency static elastography. J. Biomech. 45, 2860–2865 (2012)CrossRefGoogle Scholar
  39. 39.
    J.-L. Gennisson, S. Catheline, S. Chaffai, M. Fink, Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles. J. Acoust. Soc. Am. 114, 536–541 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    R.K. Wang, Z. Ma, S.J. Kirkpatrick, Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue. Appl. Phys. Lett. 89, 144103-144103-144103 (2006)ADSGoogle Scholar
  41. 41.
    R.K. Wang, S. Kirkpatrick, M. Hinds, Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time. Appl. Phys. Lett. 90, 164105 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer, J.S. Nelson, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett. 25, 114–116 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    J.W. Goodman, Statistical Optics (Wiley, New York, 1985)Google Scholar
  44. 44.
    B. Park, M.C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, J. de Boer, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm. Opt. Express 13, 3931–3944 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    R.K. Wang, A.L. Nuttall, Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study. J. Biomed. Opt. 15, 056005–056005 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    X. Liang, S.G. Adie, R. John, S.A. Boppart, Dynamic spectral-domain optical coherence elastography for tissue characterization. Opt. Express 18, 14183–14190 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    B.F. Kennedy, M. Wojtkowski, M. Szkulmowski, K.M. Kennedy, K. Karnowski, D.D. Sampson, Improved measurement of vibration amplitude in dynamic optical coherence elastography. Biomed. Opt. Express 3, 3138–3152 (2012)CrossRefGoogle Scholar
  48. 48.
    M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, M. Wojtkowski, Flow velocity estimation using joint spectral and time domain optical coherence tomography. Opt. Express 16, 6008–6025 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    S.G. Adie, B.F. Kennedy, J.J. Armstrong, S.A. Alexandrov, D.D. Sampson, Audio frequency in vivo optical coherence elastography. Phys. Med. Biol. 54, 3129 (2009)CrossRefGoogle Scholar
  50. 50.
    S.-R. Huang, R.M. Lerner, K.J. Parker, On estimating the amplitude of harmonic vibration from the Doppler spectrum of reflected signals. J. Acoust. Soc. Am. 88, 2702–2712 (1990)ADSCrossRefGoogle Scholar
  51. 51.
    B.F. Kennedy, X. Liang, S.G. Adie, D.K. Gerstmann, B.C. Quirk, S.A. Boppart, D.D. Sampson, In vivo three-dimensional optical coherence elastography. Opt. Express 19, 6623–6634 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    X. Liang, A.L. Oldenburg, V. Crecea, E.J. Chaney, S.A. Boppart, Optical micro-scale mapping of dynamic biomechanical tissue properties. Opt. Express 16, 11052–11065 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    B.F. Kennedy, S.H. Koh, R.A. McLaughlin, K.M. Kennedy, P.R.T. Munro, D.D. Sampson, Strain estimation in phase-sensitive optical coherence elastography. Biomed. Opt. Express 3, 1865–1879 (2012)CrossRefGoogle Scholar
  54. 54.
    C. Li, G. Guan, R. Reif, Z. Huang, R.K. Wang, Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography. J. R. Soc. Interface 9, 831–841 (2011)CrossRefGoogle Scholar
  55. 55.
    C. Li, Z. Huang, R.K. Wang, Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry. Opt. Express 19, 10153–10163 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    C. Li, G. Guan, X. Cheng, Z. Huang, R.K. Wang, Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography. Opt. Lett. 37, 722–724 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    R.K. Manapuram, S.R. Aglyamov, F.M. Monediado, M. Mashiatulla, J. Li, S.Y. Emelianov, K.V. Larin, In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography. J. Biomed. Opt. 17, 100501–100501 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    M. del Socorro Hernández-Montes, C. Furlong, J.J. Rosowski, N. Hulli, E. Harrington, J.T. Cheng, M.E. Ravicz, F.M. Santoyo, Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes. J. Biomed. Opt. 14, 034023–034023 (2009)CrossRefGoogle Scholar
  59. 59.
    M. Leclercq, M. Karray, V. Isnard, F. Gautier, P. Picart, Quantitative evaluation of skin vibration induced by a bone-conduction device using holographic recording in a quasi-time-averaging regime, in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2012), paper DW1CGoogle Scholar
  60. 60.
    G. Eskin, J. Ralston, On the inverse boundary value problem for linear isotropic elasticity. Inverse Probl. 18, 907 (2002)MathSciNetADSCrossRefMATHGoogle Scholar
  61. 61.
    B.A. Auld, General electromechanical reciprocity relations applied to the calculation of elastic wave scattering coefficients. Wave Motion 1, 3–10 (1979)CrossRefGoogle Scholar
  62. 62.
    E.R. Engdahl, R. van der Hilst, R. Buland, Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. 88, 722–743 (1998)Google Scholar
  63. 63.
    F.-C. Lin, M.P. Moschetti, M.H. Ritzwoller, Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys. J. Int. 173, 281–298 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    T.J. Royston, H.A. Mansy, R.H. Sandler, Excitation and propagation of surface waves on a viscoelastic half-space with application to medical diagnosis. J. Acoust. Soc. Am. 106, 3678–3686 (1999)ADSCrossRefGoogle Scholar
  65. 65.
    X. Zhang, J.F. Greenleaf, Estimation of tissue’s elasticity with surface wave speed. J. Acoust. Soc. Am. 122, 2522–2525 (2007)ADSCrossRefGoogle Scholar
  66. 66.
    G. Pedrini, S. Schedin, H.J. Tiziani, Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects. Opt. Lasers Eng. 38, 117–129 (2002)CrossRefGoogle Scholar
  67. 67.
    L. Mertz, Real-time fringe-pattern analysis. Appl. Opt. 22, 1535–1539 (1983)ADSCrossRefGoogle Scholar
  68. 68.
    K.R. Nightingale, M.L. Palmeri, R.W. Nightingale, G.E. Trahey, On the feasibility of remote palpation using acoustic radiation force. J. Acoust. Soc. Am. 110, 625–634 (2001)ADSCrossRefGoogle Scholar
  69. 69.
    Y. Takuma, K. Nouso, Y. Morimoto, J. Tomokuni, A. Sahara, N. Toshikuni, H. Takabatake, H. Shimomura, A. Doi, I. Sakakibara, K. Matsueda, H. Yamamoto, Measurement of spleen stiffness by acoustic radiation force impulse imaging identifies cirrhotic patients with esophageal varices. Gastroenterology 144, 92–101 (2013)CrossRefGoogle Scholar
  70. 70.
  71. 71.
    G. van. Soest, R. R. Bouchard, F. Mastik, N. de. Jong, A. F. W. van der Steen, Robust intravascular optical coherence elastography driven by acoustic radiation pressure, in Optical Coherence Tomography and Coherence Techniques III (Optical Society of America, 2007), paper 66270EEGoogle Scholar
  72. 72.
    W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, Z. Chen, Phase-resolved acoustic radiation force optical coherence elastography. J. Biomed. Opt. 17, 110505–110505 (2012)ADSCrossRefGoogle Scholar
  73. 73.
    E. Bossy, A.R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, M. Fink, Transient optoelastography in optically diffusive media. Appl. Phys. Lett. 90, 174111–174113 (2007)ADSCrossRefGoogle Scholar
  74. 74.
    V. Crecea, A.L. Oldenburg, X. Liang, T.S. Ralston, S.A. Boppart, Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials. Opt. Express 17, 23114–23122 (2009)ADSCrossRefGoogle Scholar
  75. 75.
    A.L. Oldenburg, S.A. Boppart, Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography. Phys. Med. Biol. 55, 1189–1201 (2010)CrossRefGoogle Scholar
  76. 76.
    A.L. Oldenburg, F.J.J. Toublan, K.S. Suslick, A. Wei, S.A. Boppart, Magnetomotive contrast for in vivo optical coherence tomography. Opt. Express 13, 6597–6614 (2005)ADSCrossRefGoogle Scholar
  77. 77.
    A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, Q.A. Pankhurst, Elastographic contrast generation in optical coherence tomography from a localized shear stress. Phys. Med. Biol. 55, 5515 (2010)CrossRefGoogle Scholar
  78. 78.
    A.L. Oldenburg, G. Wu, D. Spivak, F. Tsui, A.S. Wolberg, T.H. Fischer, Imaging and elastometry of blood clots using magnetomotive optical coherence tomography and labeled platelets. IEEE J. Sel. Top. Quantum Electron. 18, 1100–1121 (2012)CrossRefGoogle Scholar
  79. 79.
    R. John, E.J. Chaney, S.A. Boppart, Dynamics of magnetic nanoparticle-based contrast agents in tissues tracked using magnetomotive optical coherence tomography. IEEE J. Sel. Top. Quantum Electron. 16, 691–697 (2010)CrossRefGoogle Scholar
  80. 80.
    J. Kim, A. Ahmad, S.A. Boppart, Dual-coil magnetomotive optical coherence tomography for contrast enhancement in liquids. Opt. Express 21, 7139–7147 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    M. Fatemi, J.F. Greenleaf, Ultrasound-stimulated vibro-acoustic spectrography. Science 280, 82–85 (1998)ADSCrossRefGoogle Scholar
  82. 82.
    M. Fatemi, J.F. Greenleaf, Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission. Proc. Natl. Acad. Sci. U. S. A. 96, 6603–6608 (1999)ADSCrossRefGoogle Scholar
  83. 83.
    M.W. Urban, A. Alizad, W. Aquino, J.F. Greenleaf, M. Fatemi, A review of vibro-acoustography and its applications in medicine. Curr. Med. Imaging Rev. 7, 350–359 (2011)CrossRefGoogle Scholar
  84. 84.
    J. Greenleaf, M. Fatemi, Vibro-acoustography: speckle free ultrasonic imaging. Med. Phys. 34, 2527–2528 (2007)CrossRefGoogle Scholar
  85. 85.
    J.F. Greenleaf, M. Fatemi, M. Belohlavek, Ultrasound stimulated vibro-acoustography. Lect. Notes Comput. Sci. 3117, 1–10 (2004)CrossRefGoogle Scholar
  86. 86.
    M. Fatemi, L.E. Wold, A. Alizad, J.F. Greenleaf, Vibro-acoustic tissue mammography. IEEE Trans. Med. Imaging 21, 1–8 (2002)CrossRefGoogle Scholar
  87. 87.
    S.G. Adie, X. Liang, B.F. Kennedy, R. John, D.D. Sampson, S.A. Boppart, Spectroscopic optical coherence elastography. Opt. Express 18, 25519–25534 (2010)ADSCrossRefGoogle Scholar
  88. 88.
    C. Li, G. Guan, Z. Huang, M. Johnstone, R.K. Wang, Noncontact all-optical measurement of corneal elasticity. Opt. Lett. 37, 1625–1627 (2012)ADSCrossRefGoogle Scholar
  89. 89.
    D. Alonso-Caneiro, K. Karnowski, B.J. Kaluzny, A. Kowalczyk, M. Wojtkowski, Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system. Opt. Express 19, 14188–14199 (2011)ADSCrossRefGoogle Scholar
  90. 90.
    S. Wang, J. Li, R.K. Manapuram, F.M. Menodiado, D.R. Ingram, M.D. Twa, A.J. Lazar, D.C. Lev, R.E. Pollock, K.V. Larin, Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system. Opt. Lett. 37, 5184–5186 (2012)ADSCrossRefGoogle Scholar
  91. 91.
    J.P. Williamson, R.A. McLaughlin, W.J. Noffsinger, A.L. James, V.A. Baker, A. Curatolo, J.J. Armstrong, A. Regli, K.L. Shepherd, G.B. Marks, Elastic properties of the central airways in obstructive lung diseases measured using anatomical optical coherence tomography. Am. J. Respir. Crit. Care Med. 183, 612–619 (2011)CrossRefGoogle Scholar
  92. 92.
    A. Chau, R. Chan, M. Shishkov, B. MacNeill, N. Iftimia, G. Tearney, R. Kamm, B. Bouma, M. Kaazempur-Mofrad, Mechanical analysis of atherosclerotic plaques based on optical coherence tomography. Ann. Biomed. Eng. 32, 1494–1503 (2004)CrossRefGoogle Scholar
  93. 93.
    R. Karimi, T. Zhu, B.E. Bouma, M.R. Kaazempur Mofrad, Estimation of nonlinear mechanical properties of vascular tissues via elastography. Cardiovasc. Eng. 8, 191–202 (2008)CrossRefGoogle Scholar
  94. 94.
    J. Yin, H.C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K.K. Shung, Z. Chen, Integrated intravascular optical coherence tomography ultrasound imaging system. J. Biomed. Opt. 15, 010512 (2010)ADSCrossRefGoogle Scholar
  95. 95.
    J. Sliwa, Y. Liu, Optical coherence tomography catheter for elastographic property mapping of lumens utilizing micropalpation, U.S. Patent 20,120,265,062, 2012Google Scholar
  96. 96.
    X. Li, C. Chudoba, T. Ko, C. Pitris, J.G. Fujimoto, Imaging needle for optical coherence tomography. Opt. Lett. 25, 1520–1522 (2000)ADSCrossRefGoogle Scholar
  97. 97.
    R.A. McLaughlin, B.C. Quirk, A. Curatolo, R.W. Kirk, L. Scolaro, D. Lorenser, P. Robbins, B. Wood, C. Saunders, D. Sampson, Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results. IEEE J. Sel. Top. Quantum Electron. 18, 1184–1191 (2012)CrossRefGoogle Scholar
  98. 98.
    K.M. Kennedy, B.F. Kennedy, R.A. McLaughlin, D.D. Sampson, Needle optical coherence elastography for tissue boundary detection. Opt. Lett. 37, 2310–2312 (2012)ADSCrossRefGoogle Scholar
  99. 99.
    O.A. Shergold, N.A. Fleck, Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin. J. Biomech. Eng. – T. ASME 127, 838 (2005)CrossRefGoogle Scholar
  100. 100.
    C. Li, S. Li, G. Guan, C. Wei, Z. Huang, R.K. Wang, A comparison of laser ultrasound measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms. Opt. Laser Technol. 44, 866–871 (2012)ADSCrossRefGoogle Scholar
  101. 101.
    M. Bilgen, Target detectability in acoustic elastography. IEEE T. Ultrason. Ferroelectr. 46, 1128–1133 (1999)CrossRefGoogle Scholar
  102. 102.
    F. Kallel, M. Bertrand, J. Ophir, Fundamental limitations on the contrast-transfer efficiency in elastography: an analytic study. Ultrasound Med. Biol. 22, 463–470 (1996)CrossRefGoogle Scholar
  103. 103.
    H. Ponnekanti, J. Ophir, Y. Huang, I. Cespedes, Fundamental mechanical limitations on the visualization of elasticity contrast in elastography. Ultrasound Med. Biol. 21, 533–543 (1995)CrossRefGoogle Scholar
  104. 104.
    T. Varghese, J. Ophir, An analysis of elastographic contrast-to-noise ratio. Ultrasound Med. Biol. 24, 915–924 (1998)CrossRefGoogle Scholar
  105. 105.
    G. Lamouche, B.F. Kennedy, K.M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, D.D. Sampson, Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography. Biomed. Opt. Express 3, 1381–1398 (2012)CrossRefGoogle Scholar
  106. 106.
    M. Doyley, Model-based elastography: a survey of approaches to the inverse elasticity problem. Phys. Med. Biol. 57, R35 (2012)ADSCrossRefGoogle Scholar
  107. 107.
    A.H. Chau, R.C. Chan, M. Shishkov, B. MacNeill, N. Iftimia, G.J. Tearney, R.D. Kamm, B.E. Bouma, M.R. Kaazempur-Mofrad, Mechanical analysis of atherosclerotic plaques based on optical coherence tomography. Ann. Biomed. Eng. 32, 1494–1503 (2004)CrossRefGoogle Scholar
  108. 108.
    A.S. Khalil, R.C. Chan, A.H. Chau, B.E. Bouma, M.R.K. Mofrad, Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue. Ann. Biomed. Eng. 33, 1631–1639 (2005)CrossRefGoogle Scholar
  109. 109.
    L.M. Peterson, M.W. Jenkins, S. Gu, L. Barwick, M. Watanabe, A.M. Rollins, 4D shear stress maps of the developing heart using Doppler optical coherence tomography. Biomed. Opt. Express 3, 3022–3032 (2012)CrossRefGoogle Scholar
  110. 110.
    G. van Soest, F. Mastik, N. de Jong, A.F.W. van der Steen, Robust intravascular optical coherence elastography by line correlations. Phys. Med. Biol. 52, 2445 (2007)CrossRefGoogle Scholar
  111. 111.
    M.R. Ford, J.W.J. Dupps, A.M. Rollins, A.S. Roy, Z. Hu, Method for optical coherence elastography of the cornea. J. Biomed. Opt. 16, 016005–016005 (2011)ADSCrossRefGoogle Scholar
  112. 112.
    A. Srivastava, Y. Verma, K.D. Rao, P.K. Gupta, Determination of elastic properties of resected human breast tissue samples using optical coherence tomographic elastography. Strain 47, 75–87 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Brendan F. Kennedy
    • 1
  • Kelsey M. Kennedy
    • 1
  • Amy L. Oldenburg
    • 2
  • Steven G. Adie
    • 3
  • Stephen A. Boppart
    • 5
    • 6
  • David D. Sampson
    • 4
    • 7
  1. 1.Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer EngineeringThe University of Western AustraliaCrawleyAustralia
  2. 2.Department of Physics and Astronomy and the Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Department of Biomedical EngineeringCornell UniversityIthacaUSA
  4. 4.Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer EngineeringThe University of Western AustraliaCrawleyAustralia
  5. 5.Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  6. 6.Departments of Bioengineering, Electrical and Computer Engineering, and MedicineUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  7. 7.Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaCrawleyAustralia

Personalised recommendations