Advertisement

Interferometric Synthetic Aperture Microscopy (ISAM)

  • Steven G. Adie
  • Nathan D. Shemonski
  • Tyler S. Ralston
  • P. Scott Carney
  • Stephen A. BoppartEmail author

Abstract

The trade-off between transverse resolution and depth-of-field, and the mitigation of optical aberrations, are long-standing problems in optical imaging. The deleterious impact of these problems on three-dimensional tomography increases with numerical aperture (NA), and so they represent a significant impediment for real-time cellular resolution tomography over the typical imaging depths achieved with OCT. With optical coherence microscopy (OCM), which utilizes higher-NA optics than OCT, the depth-of-field is severely reduced, and it has been postulated that aberrations play a major role in reducing the useful imaging depth in OCM. Even at lower transverse resolution, both these phenomena produce artifacts that degrade the imaging of fine tissue structures. Early approaches to the limited depth-of-field problem in time-domain OCT utilized dynamic focusing. In spectral-domain OCT, this focus-shifting approach to data acquisition leads to long acquisition times and large datasets. Adaptive optics (AO) has been utilized to correct optical aberrations, in particular for retinal OCT, but in addition to requiring elaborate and expensive setups, the real-time optimization requirements at the time of imaging, and the correction of spatially varying effects of aberrations throughout an imaged volume, remain as significant challenges. This chapter presents computed imaging solutions for the reconstruction of sample structure when imaging with ideal and aberrated Gaussian beams.

Keywords

Interferometric synthetic aperture microscopy Computational adaptive optics Computed optical imaging Adaptive optics Wavefront shaping Aberrations Inverse Problem 

Notes

Acknowledgments

We thank all our colleagues for their contributions to the research presented in this chapter. Recent studies and results presented here were funded in part by grants from the US National Institutes of Health (R01 EB012479 and R01 EB013723, S.A.B..). Additional information can be found at http://biophotonics.illinois.edu and http://optics.beckman.illinois.edu.

References

  1. 1.
    J.A. Izatt, M.R. Hee, G.M. Owen, E.A. Swanson, J.G. Fujimoto, Optical coherence microscopy in scattering media. Opt. Lett. 19, 590–592 (1994)CrossRefADSGoogle Scholar
  2. 2.
    S.A. Boppart, B.E. Bouma, C. Pitris, J.F. Southern, M.E. Brezinski, J.G. Fujimoto, In vivo cellular optical coherence tomography imaging. Nat. Med. 4, 861–865 (1998)CrossRefGoogle Scholar
  3. 3.
    C. Zhou, D.W. Cohen, Y.H. Wang, H.C. Lee, A.E. Mondelblatt, T.H. Tsai, A.D. Aguirre, J.G. Fujimoto, J.L. Connolly, Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues. Cancer Res. 70, 10071–10079 (2010)CrossRefGoogle Scholar
  4. 4.
    M.J. Cobb, X.M. Liu, X.D. Li, Continuous focus tracking for real-time optical coherence tomography. Opt. Lett. 30, 1680–1682 (2005)CrossRefADSGoogle Scholar
  5. 5.
    V.J. Srinivasan, H. Radhakrishnan, J.Y. Jiang, S. Barry, A.E. Cable, Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast. Opt. Express 20, 2220–2239 (2012)CrossRefADSGoogle Scholar
  6. 6.
    B. Hermann, E.J. Fernandez, A. Unterhuber, H. Sattmann, A.F. Fercher, W. Drexler, P.M. Prieto, P. Artal, Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt. Lett. 29, 2142–2144 (2004)CrossRefADSGoogle Scholar
  7. 7.
    Y. Zhang, J.T. Rha, R.S. Jonnal, D.T. Miller, Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. Opt. Express 13, 4792–4811 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Y. Zhang, B. Cense, J. Rha, R.S. Jonnal, W. Gao, R.J. Zawadzki, J.S. Werner, S. Jones, S. Olivier, D.T. Miller, High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. Opt. Express 14, 4380–4394 (2006)CrossRefADSGoogle Scholar
  9. 9.
    T.S. Ralston, D.L. Marks, P.S. Carney, S.A. Boppart, Interferometric synthetic aperture microscopy. Nat. Phys. 3, 129–134 (2007)CrossRefGoogle Scholar
  10. 10.
    T.S. Ralston, G.L. Charvat, S.G. Adie, B.J. Davis, P.S. Carney, S.A. Boppart, Interferometric synthetic aperture microscopy: microscopic laser radar. Opt. Photon. News 21, 32–38 (2010)CrossRefGoogle Scholar
  11. 11.
    T.S. Ralston, D.L. Marks, P.S. Carney, S.A. Boppart, Real-time interferometric synthetic aperture microscopy. Opt. Express 16, 2555–2569 (2008)CrossRefADSGoogle Scholar
  12. 12.
    B.J. Davis, D.L. Marks, T.S. Ralston, P.S. Carney, S.A. Boppart, Interferometric synthetic aperture microscopy: computed imaging for scanned coherent microscopy. Sensors 8, 3903–3931 (2008)CrossRefGoogle Scholar
  13. 13.
    S.G. Adie, B.W. Graf, A. Ahmad, B. Dabarsyah, S.A. Boppart, P.S. Carney, The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy, in Proceedings of the SPIE (Photonics West), San Francisco, 2011, p. 78891O (8 pp)Google Scholar
  14. 14.
    S.G. Adie, B.W. Graf, A. Ahmad, P.S. Carney, S.A. Boppart, Computational adaptive optics for broadband optical interferometric tomography of biological tissue. Proc. Natl. Acad. Sci. U. S. A. 109, 7175–7180 (2012)CrossRefADSGoogle Scholar
  15. 15.
    B.J. Davis, S.C. Schlachter, D.L. Marks, T.S. Ralston, S.A. Boppart, P.S. Carney, Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy. J. Opt. Soc. Am. A 24, 2527–2542 (2007)CrossRefADSGoogle Scholar
  16. 16.
    D.L. Marks, T.S. Ralston, P.S. Carney, S.A. Boppart, Inverse scattering for rotationally scanned optical coherence tomography. J. Opt. Soc. Am. A 23, 2433–2439 (2006)CrossRefADSGoogle Scholar
  17. 17.
    B. Richards, E. Wolf, Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. Ser. A 253, 358–379 (1959)CrossRefADSzbMATHGoogle Scholar
  18. 18.
    J.W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill, San Francisco, 1996)Google Scholar
  19. 19.
    S.M. Feng, H.G. Winful, Physical origin of the Gouy phase shift. Opt. Lett. 26, 485–487 (2001)CrossRefADSGoogle Scholar
  20. 20.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, MA, 1996)Google Scholar
  21. 21.
    R.H. Stolt, Migration by Fourier-transform. Geophysics 43, 23–48 (1978)CrossRefADSGoogle Scholar
  22. 22.
    T.S. Ralston, D.L. Marks, P.S. Carney, S.A. Boppart, Inverse scattering for optical coherence tomography. J. Opt. Soc. Am. A 23, 1027–1037 (2006)CrossRefADSGoogle Scholar
  23. 23.
    A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, Optical coherence tomography – principles and applications. Rep. Prog. Phys. 66, 239–303 (2003)CrossRefADSGoogle Scholar
  24. 24.
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, New York, 1999)CrossRefzbMATHGoogle Scholar
  25. 25.
    T.S. Ralston, S.G. Adie, D.L. Marks, S.A. Boppart, P.S. Carney, Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography. Opt. Lett. 35, 1683–1685 (2010)CrossRefADSGoogle Scholar
  26. 26.
    B.R. Frieden, Optical transfer of the three-dimensional object. J. Opt. Soc. Am. 57, 56–66 (1967)CrossRefADSGoogle Scholar
  27. 27.
    J.M. Beckers, Adaptive optics for astronomy – principles, performance, and applications. Annu. Rev. Astron. Astrophys. 31, 13–62 (1993)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    D. Malacara, Optical Shop Testing, 3rd edn. (Wiley, Hoboken, 2007)CrossRefGoogle Scholar
  29. 29.
    C.W. McCutchen, Generalized aperture and the three-dimensional diffraction image. J. Opt. Soc. Am. 54, 240–244 (1964)CrossRefADSGoogle Scholar
  30. 30.
    S.G. Adie, N.D. Shemonski, B.W. Graf, A. Ahmad, P.S. Carney, S.A. Boppart, Guide-star-based computational adaptive optics for broadband interferometric tomography. Appl. Phys. Lett. 101, 221117 (2012)CrossRefADSGoogle Scholar
  31. 31.
    A.F. Fercher, C.K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, T. Lasser, Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography. Opt. Express 9, 610–615 (2001)CrossRefADSGoogle Scholar
  32. 32.
    D.L. Marks, A.L. Oldenburg, J.J. Reynolds, S.A. Boppart, Autofocus algorithm for dispersion correction in optical coherence tomography. Appl. Opt. 42, 3038–3046 (2003)CrossRefADSGoogle Scholar
  33. 33.
    D. Hillmann, C. Luhrs, T. Bonin, P. Koch, G. Huttmann, Holoscopy-holographic optical coherence tomography. Opt. Lett. 36, 2390–2392 (2011)CrossRefADSGoogle Scholar
  34. 34.
    C.E. Max, S.S. Olivier, H.W. Friedman, K. An, K. Avicola, B.V. Beeman, H.D. Bissinger, J.M. Brase, G.V. Erbert, D.T. Gavel, K. Kanz, M.C. Liu, B. Macintosh, K.P. Neeb, J. Patience, K.E. Waltjen, Image improvement from a sodium-layer laser guide star adaptive optics system. Science 277, 1649–1652 (1997)CrossRefADSGoogle Scholar
  35. 35.
    E.J. Fernandez, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P.K. Ahnelt, W. Drexler, Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. Opt. Express 16, 11083–11094 (2008)CrossRefADSGoogle Scholar
  36. 36.
    M.J. Booth, Wave front sensor-less adaptive optics: a model-based approach using sphere packings. Opt. Express 14, 1339–1352 (2006)CrossRefADSGoogle Scholar
  37. 37.
    D. Debarre, M.J. Booth, T. Wilson, Image based adaptive optics through optimisation of low spatial frequencies. Opt. Express 15, 8176–8190 (2007)CrossRefADSGoogle Scholar
  38. 38.
    D. Debarre, E.J. Botcherby, T. Watanabe, S. Srinivas, M.J. Booth, T. Wilson, Image-based adaptive optics for two-photon microscopy. Opt. Lett. 34, 2495–2497 (2009)CrossRefADSGoogle Scholar
  39. 39.
    N. Ji, D.E. Milkie, E. Betzig, Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7, 141–147 (2010)CrossRefGoogle Scholar
  40. 40.
    U. Schnars, W.P.O. Juptner, Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol 13, R85–R101 (2002)CrossRefADSGoogle Scholar
  41. 41.
    T. Colomb, F. Montfort, J. Kuhn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, C. Depeursinge, Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy. J. Opt. Soc. Am. A 23, 3177–3190 (2006)CrossRefADSGoogle Scholar
  42. 42.
    T. Colomb, N. Pavillon, J. Kuhn, E. Cuche, C. Depeursinge, Y. Emery, Extended depth-of-focus by digital holographic microscopy. Opt. Lett. 35, 1840–1842 (2010)CrossRefADSGoogle Scholar
  43. 43.
    L.F. Yu, Z.P. Chen, Digital holographic tomography based on spectral interferometry. Opt. Lett. 32, 3005–3007 (2007)CrossRefADSGoogle Scholar
  44. 44.
    W. Drexler, J.G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, New York, 2009)Google Scholar
  45. 45.
    L.F. Yu, B. Rao, J. Zhang, J.P. Su, Q. Wang, S.G. Guo, Z.P. Chen, Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method. Opt. Express 15, 7634–7641 (2007)CrossRefADSGoogle Scholar
  46. 46.
    Y. Yasuno, J.I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, T. Yatagai, Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography. Opt. Express 14, 1006–1020 (2006)CrossRefADSGoogle Scholar
  47. 47.
    G.Z. Liu, Z.W. Zhi, R.K.K. Wang, Digital focusing of OCT images based on scalar diffraction theory and information entropy. Biomed. Opt. Express 3, 2774–2783 (2012)CrossRefGoogle Scholar
  48. 48.
    A.A. Moiseev, G.V. Gelikonov, D.A. Terpelov, P.A. Shilyagin, V.M. Gelikonov, Digital refocusing for transverse resolution improvement in optical coherence tomography. Laser Phys. Lett. 9, 826–832 (2012)CrossRefADSGoogle Scholar
  49. 49.
    L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, S.D. Nicola, Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram. Appl. Phys. Lett. 90, 041104 (2007)CrossRefADSGoogle Scholar
  50. 50.
    S.T. Thurman, J.R. Fienup, Phase-error correction in digital holography. J. Opt. Soc. Am. A 25, 983–994 (2008)CrossRefADSGoogle Scholar
  51. 51.
    S.T. Thurman, J.R. Fienup, Correction of anisoplanatic phase errors in digital holography. J. Opt. Soc. Am. A 25, 995–999 (2008)CrossRefADSGoogle Scholar
  52. 52.
    A.E. Tippie, A. Kumar, J.R. Fienup, High-resolution synthetic-aperture digital holography with digital phase and pupil correction. Opt. Express 19, 12027–12038 (2011)CrossRefADSGoogle Scholar
  53. 53.
    D.L. Marks, B.J. Davis, S.A. Boppart, P.S. Carney, Partially coherent illumination in full-field interferometric synthetic aperture microscopy. J. Opt. Soc. Am. A 26, 376–386 (2009)CrossRefADSGoogle Scholar
  54. 54.
    P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, B. Javidi, Full color 3-D imaging by digital holography and removal of chromatic aberrations. J. Disp. Technol. 4, 97–100 (2008)CrossRefADSGoogle Scholar
  55. 55.
    S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, P. Ferraro, Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations. Opt. Lett. 30, 2706–2708 (2005)CrossRefADSGoogle Scholar
  56. 56.
    A.S.G. Singh, T. Schmoll, B. Javidi, R.A. Leitgeb, In-line reference-delayed digital holography using a low-coherence light source. Opt. Lett. 37, 2631–2633 (2012)CrossRefADSGoogle Scholar
  57. 57.
    D.L. Marks, T.S. Ralston, S.A. Boppart, P.S. Carney, Inverse scattering for frequency-scanned full-field optical coherence tomography. J. Opt. Soc. Am. A 24, 1034–1041 (2007)MathSciNetCrossRefADSGoogle Scholar
  58. 58.
    D. Hillmann, G. Franke, C. Lührs, P. Koch, G. Hüttmann, Efficient holoscopy image reconstruction. Opt. Express 20, 21247–21263 (2012)CrossRefADSGoogle Scholar
  59. 59.
    J.F. Xi, L. Huo, Y.C. Wu, M.J. Cobb, J.H. Hwang, X.D. Li, High-resolution OCT balloon imaging catheter with astigmatism correction. Opt. Lett. 34, 1943–1945 (2009)CrossRefADSGoogle Scholar
  60. 60.
    D. Lorenser, X. Yang, R.W. Kirk, B.C. Quirk, R.A. McLaughlin, D.D. Sampson, Ultrathin side-viewing needle probe for optical coherence tomography. Opt. Lett. 36, 3894–3896 (2011)CrossRefADSGoogle Scholar
  61. 61.
    W. Jung, W. Benalcazar, A. Ahmad, U. Sharma, H. Tu, S.A. Boppart, Numerical analysis of gradient index lens-based optical coherence tomography imaging probes. J. Biomed. Opt. 15, 066027 (2010)CrossRefADSGoogle Scholar
  62. 62.
    R. Graebner, C. Wason, H. Meinardus, Three-dimensional methods in seismic exploration. Science 211, 535–540 (1981)CrossRefADSGoogle Scholar
  63. 63.
    A. Barkefors, 3D Synthetic Aperture Technique for Ultrasonic Imaging, Masters, Signals and Systems Group, Uppsala University, 2010Google Scholar
  64. 64.
    K.J. Langenberg, M. Berger, T. Kreutter, K. Mayer, V. Schmitz, Synthetic aperture focusing technique signal-processing. NDT Int. 19, 177–189 (1986)CrossRefADSGoogle Scholar
  65. 65.
    K. Mayer, R. Marklein, K.J. Langenberg, T. Kreutter, Three-dimensional imaging-system based on Fourier-transform synthetic aperture focusing technique. Ultrasonics 28, 241–255 (1990)CrossRefGoogle Scholar
  66. 66.
    R.N. Thomson, Transverse and longitudinal resolution of the synthetic aperture focusing technique. Ultrasonics 22, 9–15 (1984)CrossRefGoogle Scholar
  67. 67.
    D.C. Munson, J.D. Obrien, W.K. Jenkins, A tomographic formulation of spotlight-mode synthetic aperture radar. Proc. IEEE 71, 917–925 (1983)CrossRefGoogle Scholar
  68. 68.
    F. Rocca, C. Cafforio, C. Prati, Synthetic aperture radar – a new application for wave-equation techniques. Geophys. Prospect. 37, 809–830 (1989)CrossRefADSGoogle Scholar
  69. 69.
    C. Cafforio, C. Prati, E. Rocca, SAR data focusing using seismic migration techniques. IEEE Trans. Aerosp. Electron. Syst. 27, 194–207 (1991)CrossRefADSGoogle Scholar
  70. 70.
    C. Cafforio, C. Prati, F. Rocca, Full resolution focusing of SEASAT SAR images in the frequency-wave number domain. Int. J. Remote Sens. 12, 491–510 (1991)CrossRefADSGoogle Scholar
  71. 71.
    W.G. Carrara, R.M. Majewski, R.S. Goodman, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms (Artech House, Norwood, 1995)zbMATHGoogle Scholar
  72. 72.
    C. Sun, F. Nolte, K.H.Y. Cheng, B. Vuong, K.K.C. Lee, B.A. Standish, B. Courtney, T.R. Marotta, A. Mariampillai, V.X.D. Yang, In vivo feasibility of endovascular Doppler optical coherence tomography. Biomed. Opt. Express 3, 2600–2610 (2012)CrossRefGoogle Scholar
  73. 73.
    T.S. Ralston, D.L. Marks, P.S. Carney, S.A. Boppart, Phase stability technique for inverse scattering in optical coherence tomography, in Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on, 2006, p. 578–581Google Scholar
  74. 74.
    N.D. Shemonski, S.G. Adie, Y-Z Liu, F.A. South, P.S. Carney, S.A. Boppart, Stability in computed optical interferometric tomography (Part I): Stability requirements. Opt. Express 22, 19183–19197 (2014)Google Scholar
  75. 75.
    G. Liu, L. Chou, W. Jia, W. Qi, B. Choi, Z. Chen, Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems. Opt. Express 19, 11429–11440 (2011)CrossRefADSGoogle Scholar
  76. 76.
    T. Meng-Tsan, L. Ya-Ju, Y. Yung-Chi, K. Che-Yen, C. Feng-Yu, J.D. Lee, Quantitative phase imaging with swept-source optical coherence tomography for optical measurement of nanostructures. Photon. Technol. Lett. IEEE 24, 640–642 (2012)CrossRefADSGoogle Scholar
  77. 77.
    W. Choi, B. Baumann, J.J. Liu, A.C. Clermont, E.P. Feener, J.S. Duker, J.G. Fujimoto, Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT. Biomed. Opt. Express 3, 1047–1061 (2012)CrossRefGoogle Scholar
  78. 78.
    W. Wieser, T. Klein, D.C. Adler, F. Trépanier, C.M. Eigenwillig, S. Karpf, J.M. Schmitt, R. Huber, Extended coherence length megahertz FDML and its application for anterior segment imaging. Biomed. Opt. Express 3, 2647–2657 (2012)CrossRefGoogle Scholar
  79. 79.
    K. Goda, A. Fard, O. Malik, G. Fu, A. Quach, B. Jalali, High-throughput optical coherence tomography at 800 nm. Opt. Express 20, 19612–19617 (2012)CrossRefADSGoogle Scholar
  80. 80.
    C. Yang, A. Wax, M.S. Hahn, K. Badizadegan, R.R. Dasari, M.S. Feld, Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics. Opt. Lett. 26, 1271–1273 (2001)CrossRefADSGoogle Scholar
  81. 81.
    S.G. Adie, B.J. Davis, T.S. Ralston, D.L. Marks, P.S. Carney, S.A. Boppart, Interferometric synthetic aperture microscopy, in Biomedical Applications of Light Scattering, ed. by A. Wax, V. Backman (McGraw-Hill, New York, 2009), pp. 77–111Google Scholar
  82. 82.
    P.H. Tomlins, R.K. Wang, Digital phase stabilization to improve detection sensitivity for optical coherence tomography. Meas. Sci. Technol. 18, 3365–3372 (2007)CrossRefADSGoogle Scholar
  83. 83.
    Y.T. Pan, R. Birngruber, R. Engelhardt, Contrast limits of coherence-gated imaging in scattering media. Appl. Opt. 36, 2979–2983 (1997)CrossRefADSGoogle Scholar
  84. 84.
    M.J. Yadlowsky, J.M. Schmitt, R.F. Bonner, Multiple-scattering in optical coherence microscopy. Appl. Opt. 34, 5699–5707 (1995)CrossRefADSGoogle Scholar
  85. 85.
    I.M. Vellekoop, A. Lagendijk, A.P. Mosk, Exploiting disorder for perfect focusing. Nat. Photonics 4, 320–322 (2010)CrossRefGoogle Scholar
  86. 86.
    Y. Choi, T.D. Yang, C. Fang-Yen, P. Kang, K.J. Lee, R.R. Dasari, M.S. Feld, W. Choi, Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett. 107, 023902 (2011)CrossRefADSGoogle Scholar
  87. 87.
    E.G. van Putten, D. Akbulut, J. Bertolotti, W.L. Vos, A. Lagendijk, A.P. Mosk, Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett. 106, 193905 (2011)CrossRefADSGoogle Scholar
  88. 88.
    R. Fiolka, K. Si, M. Cui, Complex wavefront corrections for deep tissue focusing using low coherence backscattered light. Opt. Express 20, 16532–16543 (2012)CrossRefADSGoogle Scholar
  89. 89.
    M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.L. Thomas, F. Wu, Time-reversed acoustics. Rep. Prog. Phys. 63, 1933–1995 (2000)CrossRefADSGoogle Scholar
  90. 90.
    Z. Yaqoob, D. Psaltis, M.S. Feld, C.H. Yang, Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics 2, 110–115 (2008)CrossRefADSGoogle Scholar
  91. 91.
    M. Cui, C.H. Yang, Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express 18, 3444–3455 (2010)CrossRefADSGoogle Scholar
  92. 92.
    A.P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012)CrossRefADSGoogle Scholar
  93. 93.
    G. Montaldo, M. Tanter, M. Fink, Time reversal of speckle noise. Phys. Rev. Lett. 106, 054301 (2011)CrossRefADSGoogle Scholar
  94. 94.
    W. Drexler, Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 9, 47–74 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Steven G. Adie
    • 1
  • Nathan D. Shemonski
    • 2
  • Tyler S. Ralston
    • 3
  • P. Scott Carney
    • 2
  • Stephen A. Boppart
    • 3
    • 4
    Email author
  1. 1.Department of Biomedical EngineeringCornell UniversityIthacaUSA
  2. 2.Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Departments of Bioengineering, Electrical and Computer Engineering, and MedicineUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations