Porous Silicon Optical Biosensors

Reference work entry


The rapidly developing field of porous silicon-based biosensors that utilize optical transduction is comprehensively reviewed by distinguishing the differing strategies for small- and moderate-size biomolecular analytes and the challenges with analysis of complex biofluids. A number of topics are identified for future research that should lead to one-shot disposable chip-based systems becoming commercially avialable.


Porous Silicon Optical Biosensor Biorecognition Element Gamma Hydroxybutyrate Effective Optical Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allcock P, Snow PA (2001) Time-resolved sensing of organic vapors in low modulating porous silicon dielectric mirrors. J Appl Phys 90:5052CrossRefGoogle Scholar
  2. Alvarez SD, Schwartz MP, Migliori B, Rang CU, Chao L, Sailor MJ (2007) Using a porous silicon photonic crystal for bacterial cell-based biosensing. Phys Status Solidi A 204:1439CrossRefGoogle Scholar
  3. Bonanno LM, DeLouise LA (2007a) Whole blood optical biosensor. Biosens Bioelectron 23:444CrossRefGoogle Scholar
  4. Bonanno LM, DeLouise LA (2007b) Steric crowding effects on target detection in an affinity biosensor. Langmuir 23:5817CrossRefGoogle Scholar
  5. Bonanno LM, DeLouise LA (2010) Tunable detection sensitivity of opiates in urine via a label-free porous silicon competitive inhibition immunosensor. Anal Chem 82:714CrossRefGoogle Scholar
  6. Bonanno LM, Segal E (2011) Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Nanomedicine 6:1755CrossRefGoogle Scholar
  7. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423CrossRefGoogle Scholar
  8. Byrne R, Diamond D (2006) Chemo/bio-sensor networks. Nat Mater 5:421CrossRefGoogle Scholar
  9. Chan S, Li Y, Rothberg LJ, Miller BL, Fauchet PM (2001a) Nanoscale silicon microcavities for biosensing. Mater Sci Eng C Biomimetic Supramol Syst 15:277CrossRefGoogle Scholar
  10. Chan S, Horner SR, Fauchet PM, Miller BL (2001b) Identification of gram negative bacteria using nanoscale silicon microcavities. J Am Chem Soc 123:11797CrossRefGoogle Scholar
  11. Chaudhari PS, Gokarna A, Kulkarni M, Karve MS, Bhoraskar S (2005) Porous silicon as an entrapping matrix for the immobilization of urease. Sens Actuators B 107:258CrossRefGoogle Scholar
  12. Cullis AG, Canham LT, Calcott PDJ (1997) The structural and luminescence properties of porous silicon. J Appl Phys 82:909CrossRefGoogle Scholar
  13. Dancil KPS, Greiner DP, Sailor MJ (1999) A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface. J Am Chem Soc 121:7925CrossRefGoogle Scholar
  14. De Stefano L, Arcari P, Lamberti A, Sanges C, Rotiroti L, Rea I, Rendina I (2007) DNA optical detection based on porous silicon technology: from biosensors to biochips. Sensors 7:214CrossRefGoogle Scholar
  15. DeLouise LA, Kou PM, Miller BL (2005) Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. Insights into biosensor sensitivity. Anal Chem 77:3222CrossRefGoogle Scholar
  16. Dhanekar S, Jain S (2013) Porous silicon biosensor: current status. Biosens Bioelectron 41:54CrossRefGoogle Scholar
  17. Di Francia G, La Ferrara V, Manzo S, Chiavarini S (2005) Towards a label-free optical porous silicon DNA sensor. Biosens Bioelectron 21:661CrossRefGoogle Scholar
  18. Dian J, Vrkoslav V, Jelinek I (2010) Recognition enhancement of oxidized and methyl-10-undecenoate functionalized porous silicon in gas phase photoluminescence sensing. Sens Actuators B 147:406CrossRefGoogle Scholar
  19. Estephan E, Saab M-B, Agarwal V, Cuisinier FJG, Larroque C, Gergely C (2011) Peptides for the biofunctionalization of silicon for use in optical sensing with porous silicon microcavities. Adv Funct Mater 21:2003CrossRefGoogle Scholar
  20. Furbert P, Lu C, Winograd N, DeLouise L (2008) Label-free optical detection of peptide synthesis on a porous silicon scaffold/sensor. Langmuir 24:2908CrossRefGoogle Scholar
  21. Guan B, Magenau A, Kilian KA, Ciampi S, Gaus K, Reece PJ, Gooding JJ (2011a) Mesoporous silicon photonic crystal microparticles: towards single-cell optical biosensors. Faraday Discuss 149:301CrossRefGoogle Scholar
  22. Guan B, Ciampi S, Le Saux G, Gaus K, Reece PJ, Gooding JJ (2011b) Different functionalization of the internal and external surfaces in mesoporous materials for biosensing applications using “click” chemistry. Langmuir 27:328CrossRefGoogle Scholar
  23. Gupta B, Zhu Y, Guan B, Reece PJ, Gooding JJ (2013) Functionalised porous silicon as a biosensor: emphasis on monitoring cells in vivo and in vitro. Analyst 138:3593CrossRefGoogle Scholar
  24. Jalkanen T, Mäkilä E, Suzuki YI, Urata T, Fukami K, Sakka T, Salonen J, Ogata YH (2012) Studies on chemical modification of porous silicon-based graded-index optical microcavities for improved stability under alkaline conditions. Adv Funct Mater 22:3890CrossRefGoogle Scholar
  25. Jane A, Dronov R, Hodges A, Voelcker NH (2009) Porous silicon biosensors on the advance. Trends Biotechnol 27:230CrossRefGoogle Scholar
  26. Janshoff A, Dancil KPS, Steinem C, Greiner DP, Lin VSY, Gurtner C, Motesharei K, Sailor MJ, Ghadiri MR (1998) Macroporous p-type silicon Fabry-Perot layers. Fabrication, characterization, and applications in biosensing. J Am Chem Soc 120:12108CrossRefGoogle Scholar
  27. Kilian KA, Boecking T, Gaus K, Gal M, Gooding JJ (2007) Peptide-modified optical filters for detecting protease activity. ACS Nano 1:355CrossRefGoogle Scholar
  28. Kilian KA, Boecking T, Gooding JJ (2009) The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. Chem Commun 6:630CrossRefGoogle Scholar
  29. Kilian KA, Lai LMH, Magenau A, Cartland S, Boecking T, Di Girolamo N, Gal M, Gaus K, Gooding JJ (2009b) Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals. Nano Lett 9:2021CrossRefGoogle Scholar
  30. Krepker MA, Segal E (2013) Dual-functionalized porous Si/hydrogel hybrid for label-free biosensing of organophosphorus compounds. Anal Chem 85:7353Google Scholar
  31. Latterich M, Corbeil J (2008) Label-free detection of biomolecular interactions in real time with a nano-porous silicon-based detection method. Proteome Sci 6:31Google Scholar
  32. Lauerhaas JM, Credo GM, Heinrich JL, Sailor MJ (1992) Reversible luminescence quenching of porous Si by solvents. J Am Chem Soc 114:1911CrossRefGoogle Scholar
  33. Ligler FS (2008) Perspective on optical biosensors and integrated sensor systems. Anal Chem 81:519CrossRefGoogle Scholar
  34. Lim DV (2003) Detection of microorganisms and toxins with evanescent wave fiber-optic biosensors. Proc IEEE 91:902CrossRefGoogle Scholar
  35. Lin VSY, Motesharei K, Dancil KPS, Sailor MJ, Ghadiri MR (1997) A porous silicon-based optical interferometric biosensor. Science 278:840CrossRefGoogle Scholar
  36. Lorenzo E, Oton LC, Capuj NE, Ghulinyan M, Navarro-Urrios D, Gaburro Z, Pavesi L (2005) Porous silicon-based rugate filters. Appl Opt 44:5415CrossRefGoogle Scholar
  37. Massad-Ivanir N, Shtenberg G, Zeidman T, Segal E (2010) Construction and characterization of porous SiO(2)/hydrogel hybrids as optical biosensors for rapid detection of bacteria. Adv Funct Mater 20:2269CrossRefGoogle Scholar
  38. Massad-Ivanir N, Shtenberg G, Tzur A, Krepker MA, Segal E (2011) Engineering nanostructured porous SiO(2) surfaces for bacteria detection via “direct cell capture”. Anal Chem 83:3282CrossRefGoogle Scholar
  39. Massad-Ivanir N, Shtenberg G, Segal E (2012) Advancing nanostructured porous Si-based optical transducers for label free bacteria detection. Adv Exp Med Biol 733:37CrossRefGoogle Scholar
  40. Mello LD, Kubota LT (2002) Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 77:237CrossRefGoogle Scholar
  41. Miller BL (2010) Nano-structured silicon optical sensors. In: Zourob MLA (ed) Optical guided-wave chemical and biosensors II, vol 8, p 3 Springer-Verlag Berlin, HeidelbergGoogle Scholar
  42. Nirschl M, Reuter F, Voros J (2011) Review of transducers principles for label-free biomolecular interaction analysis. Biosensors 1:70CrossRefGoogle Scholar
  43. Orosco MM, Pacholski C, Miskelly GM, Sailor MJ (2006) Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity. Adv Mater 18:1393CrossRefGoogle Scholar
  44. Orosco MM, Pacholski C, Sailor MJ (2009) Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nat Nanotechnol 4:255CrossRefGoogle Scholar
  45. Ouyang H, Christophersen M, Viard R, Miller BL, Fauchet PM (2005) Macroporous silicon microcavities for macromolecule detection. Adv Funct Mater 15:1851CrossRefGoogle Scholar
  46. Pace S, Seantier B, Belamie E, Lautredou N, Sailor MJ, Milhiet P-E, Cunin F (2012) Characterization of phospholipid bilayer formation on a thin film of porous SiO2 by reflective interferometric Fourier transform spectroscopy (RIFTS). Langmuir 28:6960CrossRefGoogle Scholar
  47. Pacholski C (2013) Photonic crystal sensors based on porous silicon. Sensors 13:4694CrossRefGoogle Scholar
  48. Pacholski C, Sartor M, Sailor MJ, Cunin F, Miskelly GM (2005) Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy. J Am Chem Soc 127:11636CrossRefGoogle Scholar
  49. Pacholski C, Yu C, Miskelly GM, Godin D, Sailor MJ (2006) Reflective interferometric Fourier transform spectroscopy: a self-compensating label-free immunosensor using double-layers of porous SiO2. J Am Chem Soc 128:4250CrossRefGoogle Scholar
  50. Pal S, Guillermain E, Sriram R, Miller BL, Fauchet PM (2011) Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing. Biosens Bioelectron 26:4024CrossRefGoogle Scholar
  51. Pal S, Fauchet PM, Miller BL (2012) 1-D and 2-D photonic crystals as optical methods for amplifying biomolecular recognition. Anal Chem 84:8900Google Scholar
  52. Qiao H, Guan B, Gooding JJ, Reece PJ (2010) Protease detection using a porous silicon based Bloch surface wave optical biosensor. Opt Express 18:15174CrossRefGoogle Scholar
  53. Rea I, Lamberti A, Rendina I, Coppola G, Gioffre M, Iodice M, Casalino M, De Tommasi E, De Stefano L (2010) Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions. J Appl Phys 107:014513CrossRefGoogle Scholar
  54. Reardon KF, Zhong Z, Lear KL (2009) Environmental applications of photoluminescence-based biosensors. In: Rao G (ed) Optical sensor systems in biotechnology, vol 116, p 99, Springer-Verlag Berlin, HeidelbergGoogle Scholar
  55. Rong G, Najmaie A, Sipe JE, Weiss SM (2008) Nanoscale porous silicon waveguide for label-free DNA sensing. Biosens Bioelectron 23:1572CrossRefGoogle Scholar
  56. Sa’ar A (2009) Photoluminescence from silicon nanostructures: the mutual role of quantum confinement and surface chemistry. J Nanophoton 3:1Google Scholar
  57. Sailor MJ (2007) Color me sensitive: amplification and discrimination in photonic silicon nanostructures. ACS Nano 1:248CrossRefGoogle Scholar
  58. Sailor MJ, Wu EC (2009) Photoluminescence-based sensing with porous silicon films, microparticles, and nanoparticles. Adv Funct Mater 19:3195CrossRefGoogle Scholar
  59. Schoning MJ, Ronkel F, Crott M, Thust M, Schultze JW, Kordos P, Luth H (1997) Miniaturization of potentiometric sensors using porous silicon microtechnology. Electrochim Acta 42:3185CrossRefGoogle Scholar
  60. Schwartz MP, Derfus AM, Alvarez SD, Bhatia SN, Sailor MJ (2006) The smart petri dish: a nanostructured photonic crystal for real-time monitoring of living cells. Langmuir 22:7084CrossRefGoogle Scholar
  61. Schwartz MP, Alvarez SD, Sailor MJ (2007) Porous SiO2 interferometric biosensor for quantitative determination of protein interactions: binding of protein a to immunoglobulins derived from different species. Anal Chem 79:327CrossRefGoogle Scholar
  62. Sciacca B, Frascella F, Venturello A, Rivolo P, Descrovi E, Giorgis F, Geobaldo F (2009) Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules. Sens Actuators B 137:467CrossRefGoogle Scholar
  63. Sciacca B, Secret E, Pace S, Gonzalez P, Geobaldo F, Quignard F, Cunin F (2011) Chitosan-functionalized porous silicon optical transducer for the detection of carboxylic acid-containing drugs in water. J Mater Chem 21:2294CrossRefGoogle Scholar
  64. Shang Y, Zhao W, Xu E, Tong C, Wu J (2010) FTRIFS biosensor based on double layer porous silicon as a LC detector for target molecule screening from complex samples. Biosens Bioelectron 25:1056CrossRefGoogle Scholar
  65. Shang J, Cheng F, Dubey M, Kaplan JM, Rawal M, Jiang X, Newburg DS, Sullivan PA, Andrade RB, Ratner DM (2012) An organophosphonate strategy for functionalizing silicon photonic biosensors. Langmuir 28:3338CrossRefGoogle Scholar
  66. Shtenberg G, Massad-Ivanir N, Engin S, Sharon M, Fruk L, Segal E (2012) DNA-directed immobilization of horseradish peroxidase onto porous SiO2 optical transducers. Nanoscale Res Lett 7:443Google Scholar
  67. Singh S, Sharma SN, Govind, Shivaprasad SM, Lal M, Khan MA (2009) Nanostructured porous silicon as functionalized material for biosensor application. J Mater Sci Mater Med 20:181CrossRefGoogle Scholar
  68. Starodub VM, Fedorenko LL, Sisetskiy AP, Starodub NF (1999) Control of myoglobin level in a solution by an immune sensor based on the photoluminescence of porous silicon. Sens Actuators B 58:409CrossRefGoogle Scholar
  69. Starodub NF, Shulyak LM, Shmyryeva OM, Pylipenko IV, Pylipenko LN, Mel’nichenko MM (2009) Nanostructured silicon and its application as the transducer in immune biosensors. In: Mikhalovsky SKA (ed) Biodefence: advanced materials and methods for health protection. p 87 Springer - Dordrecht, NetherlandsGoogle Scholar
  70. Szili EJ, Jane A, Low SP, Sweetman M, Macardle P, Kumar S, Smart RSC, Voelcker NH (2011) Interferometric porous silicon transducers using an enzymatically amplified optical signal. Sens Actuators B 160:341CrossRefGoogle Scholar
  71. Thust M, Schoning MJ, Frohnhoff S, ArensFischer R, Kordos P, Luth H (1996) Porous silicon as a substrate material for potentiometric biosensors. Meas Sci Technol 7:26CrossRefGoogle Scholar
  72. Tsang CK, Kelly TL, Sailor MJ, Li YY (2012) Highly stable porous silicon–carbon composites as label-free optical biosensors. ACS Nano 6:10546Google Scholar
  73. Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366:540CrossRefGoogle Scholar
  74. Weiss SM, Rong G, Lawrie JL (2009) Current status and outlook for silicon-based optical biosensors. Phys E 41:1071CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.The interdepartmental Program of Biotechnology, Department of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Biotechnology and Food EngineeringThe Russell Berrie Nanotechnology Institute, Technion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations